K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2016

\(A=\frac{1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}}{1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\frac{1}{16}}\)

Đặt tử số là B, mẫu số là C

\(B=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\)

\(2B=2+1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}\)

\(2B-B=\left(2+1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}\right)-\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\right)\)

\(B=2-\frac{1}{16}\)

\(B=\frac{32}{16}-\frac{1}{16}=\frac{31}{16}\)

\(C=1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\frac{1}{16}\)

\(2C=2-1+\frac{1}{2}-\frac{1}{4}+\frac{1}{8}\)

\(2C+C=\left(2-1+\frac{1}{2}-\frac{1}{4}+\frac{1}{8}\right)+\left(1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\frac{1}{16}\right)\)

\(3C=2+\frac{1}{16}\)

\(3C=\frac{32}{16}+\frac{1}{16}\)

\(3C=\frac{33}{16}\)

\(C=\frac{33}{16}:3=\frac{11}{16}\)

=> \(A=\frac{B}{C}=\frac{31}{16}:\frac{11}{16}=\frac{31}{16}.\frac{16}{11}=\frac{31}{11}\)

12 tháng 12 2020

Bài làm

\(\frac{\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\right)}{\left(1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\frac{1}{16}\right)}\)

\(=\frac{\left(\frac{2}{2}+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}\right)}{\left(\frac{2}{2}-\frac{1}{2}+\frac{1}{2^2}-\frac{1}{2^3}+\frac{1}{2^4}\right)}\)

\(=\frac{\frac{1}{2}\left(2+1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}\right)}{\frac{1}{2}\left(2-1+\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}\right)}\)

\(=\frac{3+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}}{1+\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}}\)

\(=\frac{\frac{24}{8}+\frac{4}{8}+\frac{2}{8}+\frac{1}{8}}{\frac{8}{8}+\frac{4}{8}-\frac{2}{8}+\frac{1}{8}}\)

\(=\frac{31}{8}\div\frac{11}{8}\)

\(=\frac{31}{8}\cdot\frac{8}{11}\)

\(=\frac{31}{11}\)

P/S: Trông không thuận tiện lắm :/

12 tháng 12 2020

Hawy tính giúp mình nha mình cho đúng

14 tháng 9 2016

kết quả là 1/1024

30 tháng 10 2023

\(E=\dfrac{\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{3}-1\right)\cdot...\cdot\left(\dfrac{1}{2002}-1\right)\left(\dfrac{1}{2003}-1\right)}{\dfrac{3}{4}\cdot\dfrac{8}{9}\cdot...\cdot\dfrac{9999}{10000}}\)

\(=\dfrac{\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\cdot...\cdot\left(1-\dfrac{1}{2002}\right)\left(1-\dfrac{1}{2003}\right)}{\left(1-\dfrac{1}{4}\right)\left(1-\dfrac{1}{9}\right)\left(1-\dfrac{1}{100^2}\right)}\)

\(=\dfrac{\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\cdot...\cdot\left(1-\dfrac{1}{2002}\right)\left(1-\dfrac{1}{2003}\right)}{\left(1-\dfrac{1}{2}\right)\left(1+\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\left(1+\dfrac{1}{3}\right)\cdot...\cdot\left(1-\dfrac{1}{100}\right)\left(1+\dfrac{1}{100}\right)}\)

\(=\dfrac{\dfrac{100}{101}\cdot\dfrac{101}{102}\cdot...\cdot\dfrac{2002}{2003}}{\left(1+\dfrac{1}{2}\right)\left(1+\dfrac{1}{3}\right)\cdot...\cdot\left(1+\dfrac{1}{100}\right)}\)

\(=\dfrac{100}{2003}:\left(\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot...\cdot\dfrac{101}{100}\right)\)

\(=\dfrac{100}{2003}:\left(\dfrac{101}{2}\right)=\dfrac{100}{2003}\cdot\dfrac{2}{101}=\dfrac{200}{202303}\)

26 tháng 9 2016

31/11 nhen bạn bấm may tính ra liền

2 tháng 7 2017

\( A= 3 ( 4^2+1).(4^4+1).(4^8+1) - ( 4^{16}+1) - \frac{4^{32}}{5}\)