K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2020

TUI ĐANG GẤP CHO TÔI HỎI BÀI NÀY LỚP 2 NHA\\\\

AN CÓ 180 CÁI KẸO.BÌNH CÓ 160. HỎI BÌNH CÓ MẤY CÁI KẸO

10 tháng 10 2020

a) Ta có: \(2.4.\left(3^2+1\right)\left(3^4+1\right)...\left(3^{16}+1\right)\)

\(=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{16}+1\right)\)

\(=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(=\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(=\left(3^{16}-1\right)\left(3^{16}+1\right)\)

\(=3^{32}-1\)

13 tháng 9 2015

c;=(50-49)(50+49)+(48-47)(48+47)+.............+(2+1)(2-1)


=50+49+48+............+1


=(50+1)50=2550:2=1275


d;=(2^4-1)(2^4+1)(2^8+1)(2^16+1)


=(2^8-1)(2^8+1)(2^16+1)


=(2^16-1)(2^16+1)


=2^32-1



e;=(3-1)(3+1)(3^2+1)...........(3^16+1)


=(3^2-1)(3^2+1)..............(3^16+1)


=(3^16-1)(3^16+1)=3^32-1


tu tinh ket qua luy thua tao khong thua hoi dau



15 tháng 9 2019

\(A=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(\Leftrightarrow2A=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(\Leftrightarrow2A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(\Leftrightarrow2A=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(\Leftrightarrow2A=\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(\Leftrightarrow2A=\left(3^{16}-1\right)\left(3^{16}+1\right)\)

\(\Leftrightarrow2A=3^{32}-1\)

\(\Leftrightarrow A=3^{31}-\frac{1}{2}\)

5 tháng 11 2015

Bài 1. 

a. \(3^4.5^4-\left(15^2+1\right)\left(15^2-1\right)=15^4-\left(15^4-1\right)=1\)

b. \(x=11\Rightarrow x+1=12\)

Từ đây, ta có: \(x^4-\left(x+1\right)x^3+\left(x+1\right)x^2-\left(x+1\right)x+111=-x+111=-11+111=100\)

Bài 2. 

\(3\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^{16}-1\right)\left(2^{16}+1\right)\)

\(=2^{32}-1\)

\(a,\left(a-b+c\right)^2-\left(b-c\right)^2+2ab-2ac\) =\(a^2+b^2+c^2-2ab-2bc+2ac-b^2+2bc-c^2+2ab-2ac\) =\(a^2\) b)\(\left(3x+1\right)^2-2\left(3x+1\right)\left(3x+5\right)+\left(3x+5\right)^2\) =\(\left(3x+1\right)^2-2\left(3x+3-2\right)\left(3x+3+2\right)+\left(3x+5\right)^2\) =\(\left(3x+1\right)^2-2\left(\left(3x+3\right)^2-4\right)+\left(3x+5\right)^2\) =\(9x^2+6x+1-18x^2-36x-9+8+9x^2+30x+25\) =25 c)\(\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{64}+1\right)\) =\(\left(2-1\right)\left(2+1\right)\left(2^2+1\right)....\left(2^{64}+1\right)\) =\(\left(2^2-1\right)\left(2^2+1\right)...\left(2^{64}+1\right)\) =... =\(\left(2^{64}-1\right)\left(2^{64}+1\right)=2^{128}-1\) \)

d)Tương tự

\(a,\left(a-b+c\right)^2-\left(b-c\right)^2+2ab-2ac\)

=\(a^2+b^2+c^2-2ab-2bc+2ac-b^2+2bc-c^2+2ab-2ac\)

=\(a^2\)

b)\(\left(3x+1\right)^2-2\left(3x+1\right)\left(3x+5\right)+\left(3x+5\right)^2\)

=\(\left(3x+1\right)^2-2\left(3x+3-2\right)\left(3x+3+2\right)+\left(3x+5\right)^2\)

=\(\left(3x+1\right)^2-2\left(\left(3x+3\right)^2-4\right)+\left(3x+5\right)^2\)

=\(9x^2+6x+1-18x^2-36x-9+8+9x^2+30x+25\)

=25

c)\(\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{64}+1\right)\)

=\(\left(2-1\right)\left(2+1\right)\left(2^2+1\right)....\left(2^{64}+1\right)\)

=\(\left(2^2-1\right)\left(2^2+1\right)...\left(2^{64}+1\right)\)

=...

=\(\left(2^{64}-1\right)\left(2^{64}+1\right)=2^{128}-1\)

d)Tương tự

5 tháng 9 2017

cảm ơn

a: \(=\left[a-\left(b-c\right)\right]^2-\left(b-c\right)^2+2ab-2ac\)

\(=a^2-2a\left(b-c\right)+\left(b-c\right)^2-\left(b-c\right)^2+2ab-2ac\)

\(=a^2-2ab+2ac+2ab-2ac=a^2\)

b: \(\left(3x+1\right)^2-2\left(3x+1\right)\left(3x+5\right)+\left(3x+5\right)^2\)

\(=\left(3x+1-3x-5\right)^2\)

\(=\left(-4\right)^2=16\)

c: \(\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\cdot...\cdot\left(2^{64}+1\right)\)

\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\cdot...\cdot\left(2^{64}+1\right)\)

\(=\left(2^4-1\right)\left(2^4+1\right)\cdot...\cdot\left(2^{64}+1\right)\)

\(=\left(2^8-1\right)\left(2^8+1\right)\cdot...\cdot\left(2^{64}+1\right)\)

\(=\left(2^{16}-1\right)\left(2^{16}+1\right)\cdot\left(2^{32}+1\right)\left(2^{64}+1\right)\)

\(=2^{128}-1\)

d: \(\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)

\(=\dfrac{\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)}{2}\)

\(=\dfrac{\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)}{2}\)

\(=\dfrac{\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)}{2}\)

\(=\dfrac{3^{64}-1}{2}\)