Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{A= 1-2-3+4+5-6-7+8+9-...+1992+1993-1994}\)
\(A=\left(1-2-3+4\right)+...+\left(1989-1990-1992+1992\right)+1993-1994\)
\(A=0+0+...+0+1993-1994\)
\(A=-1\)
\(A=1-2-3+4+5-6-7+8+...+1992+1993-1994\)
\(A=\left(1-2-3+4\right)+...+\left(1989-1990-1991+1992\right)+1993-1994\)( 498 nhóm dư 2 )
\(A=0+0+...+0+1993-1994\)
\(A=1993-1994=-1\)
Vậy A = -1
CMR: 31994 + 31993 - 31992 chia hết cho 11
\(^{3^{1992}}\). ( 9 + 3 - 1 )
\(^{3^{1992}}\). 11
vì 11 chia hết cho 11
nên \(3^{1992}\).11 chia hết cho 11
Vậy 31994 + 31993 - 31992 chia hết cho 11 ( đpcm)
\(^{3^{1992}}\)
\(D=1+4+4^2+...+4^{1993}\)
\(\Leftrightarrow4D=4+4^2+4^3+...+4^{1994}\)
hay \(D=\dfrac{4^{1994}-1}{3}\)
\(C=\dfrac{75C+25}{4^{1994}}=\dfrac{25\cdot4^{1994}-25+25}{4^{1994}}=25\)
\(A=10^{1991}.\left(1+10+10^2+10^3\right)+1238=1111.10^{1991}+1238\)
\(\left\{{}\begin{matrix}10⋮2\\1238⋮2\end{matrix}\right.\) \(\Rightarrow A⋮2\)
\(10\equiv1\left(mod9\right)\Rightarrow10^{1991}\equiv1\left(mod9\right)\)
Và \(1111\equiv4\left(mod9\right)\Rightarrow1111.10^{1991}\equiv4\left(mod9\right)\)
\(1238\equiv5\left(mod9\right)\)
\(\Rightarrow1111.10^{1991}+1238\equiv4+5\left(mod9\right)\)
Do \(4+5⋮9\Rightarrow A⋮9\)
Mà 2 và 9 nguyên tố cùng nhau \(\Rightarrow A⋮19\)
\(1111.10^{1991}=100.1111.10^{1989}⋮4\) do 100 chia hết cho 4
Và \(1238\) chia hết cho 2 mà ko chia hết cho 4
\(\Rightarrow A\) chia hết cho 2 mà ko chia hết cho 4
\(\Rightarrow\) A không phải là số chính phương
a)Xét các trường hợp:
n= 3k (k ∈ N) ⇒ A = 9k2 chia hết cho 3
n= 3k 1 (k ∈ N) A = 9k2 6k +1 chia cho 3 dư 1
Vậy số chính phương chia cho 3 chỉ có thể có số dư bằng 0 hoặc 1.
+Ta đã sử tính chia hết cho 3 và số dư trong phép chia cho 3 .
b)Xét các trường hợp
n =2k (k ∈ N) ⇒ A= 4k2, chia hết cho 4.
n= 2k+1(k ∈ N) ⇒ A = 4k2 +4k +1
= 4k(k+1)+1,
chia cho 4 dư 1(chia cho 8 cũng dư 1)
vậy số chính phương chia cho 4 chỉ có thể có số dư bằng 0 hoặc 1.
+Ta đã sử tính chia hết cho 4 và số dư trong phép chia cho 4 .
Chú ý: Từ bài toán trên ta thấy:
-Số chính phương chẵn chia hết cho 4
-Số chính phương lẻ chia cho 4 dư 1( chia cho 8 cũng dư 1).
c) Các số 19932,19942 là số chính phương không chia hết cho 3 nên chia cho 3 dư 1,còn 19922 chia hết cho 3.
Vậy M chia cho 3 dư 2,không là số chính phương.
Các số 19922,19942 là số chính phương chẵn nên chia hết cho 4.
Các số 19932,19952 là số chính phương lẻ nên chia cho 4 dư 1.
Vậy số N chia cho 4 dư 2,không là số chính phương.
1993 x (1994 + 1992) = 7944098