Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S= 2-1-2-3-4-....-201-202
= 2-(1+2+3+4+....+202)
=2- (202:2)( 202+1)
= 2- 101.203
\(B=\left(\frac{1}{4}-1\right)\cdot\left(\frac{1}{9}-1\right).....\left(\frac{1}{81}-1\right)\cdot\left(\frac{1}{100}-1\right)\)
\(B=\frac{-3}{4}\cdot\frac{-8}{9}....\frac{-80}{81}\cdot\frac{-99}{100}\)
\(B=-\left(\frac{3}{4}\cdot\frac{8}{9}\cdot\cdot\cdot\cdot\frac{99}{100}\right)\)
\(B=-\left(\frac{3\cdot8\cdot15\cdot24\cdot....\cdot63\cdot80\cdot99}{2^2\cdot3^2\cdot4^2\cdot\cdot\cdot\cdot\cdot9^2\cdot10^2}\right)\)
\(B=-\left(\frac{1\cdot3\cdot2\cdot4\cdot3\cdot5\cdot\cdot\cdot\cdot8\cdot10\cdot9\cdot11}{2^2\cdot3^2\cdot4^2\cdot\cdot\cdot\cdot9^2\cdot10^2}\right)\)
\(B=-\frac{11}{2\cdot10}\)
\(B=\frac{-11}{20}\)
\(B=\left(\frac{1}{4}-1\right).\left(\frac{1}{9}-1\right)...\left(\frac{1}{100}-1\right)\)
\(B=\frac{-3}{2^2}.\frac{-8}{3^2}...\frac{-99}{10^2}\)
\(B=-\left(\frac{3}{2^2}.\frac{8}{3^2}...\frac{99}{10^2}\right)\)(có 9 thừa số, mỗi thừa số là âm nên kết quả là âm)
\(B=-\left(\frac{1.3}{2.2}.\frac{2.4}{3.3}...\frac{9.11}{10.10}\right)\)
\(B=-\left(\frac{1.2...9}{2.3...10}.\frac{3.4...11}{2.3...10}\right)\)
\(B=-\left(\frac{1}{10}.\frac{11}{2}\right)\)
\(B=-\frac{11}{20}\)
Câu 1: A = ( 3 + 3² + 3^5 + 3^7 ) + ( 3^9 + 3^11 + 3^13 + 3^15 ) + . + ( 3^1991 + 3^1989 + 3^1987 + 3^1985 )
A = 2442 + 3^9( 3 + 3² + 3^5 + 3^7 ) + .......... + 3^1985( 3 + 3² + 3^5 + 3^7 )
A = 2442 + 3^9 . 2442 + ........... + 3^1985.2442
Do 2442 chia hết cho 41 => A chia hết cho 41
( Dơn giản là cxư nhóm 4 số hạng liền nhau của dãy vào với nhau )
\(4^{2017}:\left(4^{2014}+3\cdot4^{2014}\right)\)
\(=4^{2017}:4^{2014}\left(1+3\right)\)
\(=4^3\cdot4\)
\(=4^4\)
\(=256\)
\(M=1+\dfrac{1}{5}+\dfrac{3}{35}+...+\dfrac{3}{9999}\\ =\dfrac{3}{3}+\dfrac{3}{15}+\dfrac{3}{35}+...+\dfrac{3}{9999}\\ =\dfrac{3}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{99\cdot101}\right)\\ =\dfrac{3}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\\ =\dfrac{3}{2}\left(1-\dfrac{1}{101}\right)=\dfrac{3}{2}\cdot\dfrac{100}{101}=\dfrac{150}{101}\)