K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 2 2018

Đặt \(A=\frac{1}{2018}+\frac{2}{2018}+\frac{3}{2018}+\frac{4}{2018}+...+\frac{2016}{2018}+\frac{2017}{2018}\)

Ta thấy dãy trên có 2017 phân số 

Do đó \(A=\left(\frac{1}{2018}+\frac{2017}{2018}\right)+\left(\frac{2}{2018}+\frac{2016}{2018}\right)+....+\left(\frac{1010}{2018}+\frac{1008}{2018}\right)+\frac{1009}{2018}\)

Ta thấy cả 1008 cặp số và 1 phân số 

Suy ra \(A=1.1008+\frac{1009}{2018}=\frac{1008\times2018}{2018}+\frac{1009}{2018}=\frac{2016\times1009}{2018}+\frac{1009}{2018}\)

\(A=\frac{2017.1009}{2018}\)

8 tháng 2 2018

cảm ơn bạn nhé

3 tháng 8 2017

= 0 nha bn

tk cho mk với

\(=\frac{2018}{2017}\)

~~~~~~~~~~~ai đi ngang qua nhớ để lại k ~~~~~~~~~~~~~

 ~~~~~~~~~~~~ Chúc bạn sớm kiếm được nhiều điểm hỏi đáp ~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~ Và chúc các bạn trả lời câu hỏi này kiếm được nhiều k hơn ~~~~~~~~~~~~

28 tháng 1 2020

Ta có : A =\(\frac{2017}{2018}\)\(\frac{7}{8}\)\(\frac{2017}{2018}\)\(\frac{3}{8}\)\(\frac{2017}{2018}\)\(\frac{1}{4}\)

                = \(\frac{2017}{2018}\) x ( \(\frac{7}{8}+\frac{3}{8}-\frac{1}{4}\))

                  = \(\frac{2017}{2018}\)x 1

                    =\(\frac{2017}{2018}\)

Vậy A= : \(\frac{2017}{2018}\)

28 tháng 1 2020

                                                                   Bài giải

\(A=\frac{2017}{2018}\text{ x }\frac{7}{8}+\frac{2017}{2018}\text{ x }\frac{3}{8}-\frac{2017}{2018}\text{ x }\frac{1}{4}\)

\(A=\frac{2017}{2018}\text{ x }\frac{1}{4}\left(\frac{7}{2}+\frac{3}{2}-1\right)=\frac{2017}{2018}\text{ x }\frac{1}{4}\text{ x }4==\frac{2017}{2018}\text{ x }1=\frac{2017}{2018}\)

12 tháng 3 2018

hình như cái này đâu phải toán lớp 5 đâu bạn

12 tháng 3 2018

nhầm toán lớp 6

16 tháng 4 2020

mk cần gấp

27 tháng 4 2018

ahuihu

1 tháng 8 2017

\(\frac{2018}{1.2}+\frac{2018}{2.3}+\frac{2018}{3.4}+...+\frac{2018}{2017.2018}\)

\(=2018\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}\right)\)

\(=2018\left(1-\frac{1}{2018}\right)\)

\(=2018\cdot\frac{2017}{2018}=2017\)

1 tháng 8 2017

\(\frac{2018}{1.2}+\frac{2018}{2.3}+\frac{2018}{3.4}+...+\frac{2018}{2017.2018}\)

\(2018.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2017.2018}\right)\)

\(2018.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}\right)\)

\(2018.\left(1-\frac{1}{2018}\right)\)

\(2018-1=2017\)

8 tháng 6 2019

#)Giải :

\(Q=2+\frac{2016}{2017+2018+2019}+\frac{2017}{2017+2018+2019}+\frac{2018}{2017+2018+2019}\)

Ta thấy : \(2>\frac{2016}{2017};2>\frac{2017}{2018};2>\frac{2018}{2019}\left(1\right)\)

\(\frac{2016}{2017+2018+2019}< \frac{2016}{2017}\left(2\right)\)

\(\frac{2017}{2017+2018+2019}< \frac{2017}{2018}\left(3\right)\)

\(\frac{2018}{2017+2018+2019}< \frac{2018}{2019}\left(4\right)\)

Từ (1) (2) (3) (4) \(\Rightarrow P>Q\)