Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(x^2-x-y^2-y=\left(x^2-y^2\right)-\left(x+y\right)=\left(x-y\right)\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(x-y-1\right)\)
\(x^2-2xy+y^2-z^2=\left(x-y\right)^2-z^2=\left(x-y-z\right)\left(x-y+z\right)\)
2)\(5x-5y+ax-ay=5\left(x-y\right)+a\left(x-y\right)=\left(x-y\right)\left(a+5\right)\)
\(a^3-a^2x-ay+xy=a^2\left(a-x\right)-y\left(a-x\right)=\left(a-x\right)\left(a^2-y\right)\)
A= x^2 -2xy + y^2 - (2z)^2
= ( x- y)^2 - (2z)^2
= ( x-y - 2z)(x - y +2z)
= ( 6 - (-4) - 2.4,5) ( 6 - (-4) + 2.4,5)
= ( 10 - 90)( 10 + 90 )
= -80.100
=-8000
\(x^2-2xy-4z^2+y^2\)
\(=\left(x^2-2xy+y^2\right)-\left(2z\right)^2\)
\(=\left(x-y\right)^2-\left(2x\right)^2\)
\(=\left(x-y-2z\right)\left(x-y+2z\right)\)
Thay x=6 ; y=-4 ; z=45 vào biểu thức trên ta được:
\(\left(x-y-2z\right)\left(x-y+2z\right)\)
\(=\left(6-4-45.2\right)\left(6-4+2.45\right)\)
\(=\left(2-90\right)\left(2+90\right)\)
=\(-8096\)
Câu 1:
\(\text{a) }x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-3xy-3yz-3xz\right)\)
\(\text{b) }x^6-y^6=\left(x^3\right)^2-\left(y^3\right)^2=\left(x^3-y^3\right)\left(x^3+y^3\right)=\left(x-y\right)\left(x^2+xy+y^2\right)\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(\text{c) }xy\left(x+y\right)+yz\left(y+z\right)+xz\left(x+z\right)+2xyz\\ =x^2y+xy^2+y^2z+yz^2+x^2z+xz^2+xyz+xyz\\ =\left(x^2y+x^2z+xyz\right)+\left(xy^2+y^2z+xyz\right)\\ =x\left(xy+xz+yz\right)+y\left(xy+yz+xz\right)\\ =\left(x+y\right)\left(xy+yz+xz\right)\\ \\ \)
Câu 3:
\(x^2-10x=-25\\ \Leftrightarrow x^2-10x+25=0\\\Leftrightarrow\left(x-5\right)^2=0\\ \Leftrightarrow x-5=0\\ \Leftrightarrow x=5 \)
Vậy \(x=5\)
\(\)
a) \(x^2-2xy-4z^2+y^2=\left(x-y\right)^2-4z^2=\left(x-y-2z\right)\left(x-y+2z\right)=\left(6+4-2.45\right)\left(6+4+2.45\right)=-8000\)b) \(3\left(x-3\right)\left(x+7\right)+\left(x-4\right)^2+48=3\left(x^2+4x-21\right)+\left(x^2-8x+16\right)+48=4x^2+4x+1=\left(2x+1\right)^2=\left(2.0,5+1\right)^2=4\)
a: Ta có: \(x^2-2xy+y^2-4z^2\)
\(=\left(x-y\right)^2-\left(2z\right)^2\)
\(=\left(x-y-2z\right)\left(x-y+2z\right)\)
\(=\left(6+4-2\cdot45\right)\left(6+4+2\cdot45\right)\)
\(=-8000\)
b: Ta có: \(3\left(x-3\right)\left(x+7\right)+\left(x-4\right)^2+48\)
\(=3\left(x^2+4x-21\right)+\left(x-4\right)^2+48\)
\(=3x^2+12x-63+x^2-8x+16+48\)
\(=2x^2+4x+1\)
\(=2\cdot\dfrac{1}{4}+4\cdot\dfrac{1}{2}+1\)
\(=\dfrac{7}{2}\)
3( x - 3 )( x + 7) + ( x - 4)2 + 48=(3x-9)(x+7)+x2-2.x.4+42+48
=3x2+21x-9x-63+x2-8x+16+48
=4x2+4x+1
=4(x2+x)+1
Thay x=0,5 ta có:
3( x - 3 )( x + 7) + ( x - 4)2 + 48=4(0,52+0,5)+1=4(0,25+0,5)+1=4.0,75+1=3+1=4
Mình ko chắc lắm đâu nha, bạn bấm thử máy tính xem, sai thì cho mình xin lỗi
3( x - 3 )( x + 7) + ( x - 4)2 + 48=(3x-9)(x+7)+x2-2.x.4+42+48
=3x2+21x-9x-63+x2-8x+16+48
=4x2+4x+1
=4(x2+x)+1
Thay x=0,5 ta có:
3( x - 3 )( x + 7) + ( x - 4)2 + 48=4(0,52+0,5)+1=4(0,25+0,5)+1=4.0,75+1=3+1=4
Mình ko chắc lắm đâu nha, bạn bấm thử máy tính xem, sai thì cho mình xin lỗi
Ta có: x2 - 2xy - 4z2 + y2
= (x2 - 2xy + y2) - (2z)2
= (x - y)2 - (2z)2
=(x - y - 2z)(x- y +2z) (*)
Thay x= 6; y= -4; z=45 vào biểu thức (*), ta đc:
(6 + 4 - 2.45)(6 + 4 +2.45)
= -80.100
=-8000
Vậy...
a)x2-2xy-4x2+y2
= (x2-2xy+y2)-(2x)2
= (x-y)2-(2x)2 = (x-y-2x)(x-y+2x)(1)
Thay x=6; y=-4; z=45 ta được:
(1)<=>(6+4-90)(6+4+90)= (10-90).(10+90)=-80.100= -8000