K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

bn vào câu hỏi tương tự sẽ có chi tiết . Nếu k thì bn hãy để ý mỗi tử đều bé hơn mẫu 1 đơn vị sau đó bn tách ra bằng cách lấy 1 trừ . VD: 5/6 bằng 1  -  1/6 . Đến đó đếm đc 9 chữ số 1 ta lấy 9 làm sbt trừ đi tổng của các ps ta tách đc . Khi đó thì bài toán quá đơn giản rồi . Chúc bn học tốt

7 tháng 8 2018

(1-1/2)+(1-1/6)+...+(1-1/90)

9+(1/2+1/6+...+1/90)

9+(1/1.2+1/2.3+...+1/9.10)

9+1-9/10=9/1/10=91/10

7 tháng 7 2018

\(\frac{1}{2}+\frac{5}{6}+\frac{11}{12}+\frac{19}{20}+\frac{29}{30}+\frac{41}{42}+\frac{55}{56}+\frac{71}{72}+\frac{89}{90}\) \(\frac{89}{90}\)

\(=(1-\frac{1}{2})+\left(1-\frac{1}{6}\right)+\left(1-\frac{1}{12}\right)+\left(1-\frac{1}{20}\right)+\left(1-\frac{1}{30}\right)+\left(1-\frac{1}{42}\right)+\left(1-\frac{1}{56}\right)\) \(+\left(1-\frac{1}{72}\right)+\left(1-\frac{1}{90}\right)\)

\(=\left(1+1+1+1+1+1+1+1+1\right)-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}\right)\)

\(=9-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}\right)\) 

\(=9-\frac{11}{10}\)

\(=\frac{79}{10}\)

~Học tốt nha~

7 tháng 7 2018

Đặt : \(A=\frac{1}{2}+\frac{5}{6}+\frac{11}{12}+\frac{19}{20}+\frac{29}{30}+\frac{41}{42}+\frac{55}{56}+\frac{71}{72}+\frac{89}{90}\)

\(\Leftrightarrow A=\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{6}\right)+......+\left(1-\frac{1}{90}\right)\)

\(\Leftrightarrow A=\left(1+1+....+1\right)-\left(\frac{1}{2}+\frac{1}{6}+....+\frac{1}{90}\right)\)

\(\Leftrightarrow A=9-\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\right)\)

\(\Leftrightarrow A=9-\left(1-\frac{1}{10}\right)\)

\(\Leftrightarrow A=9-\frac{9}{10}=\frac{81}{90}\)

28 tháng 4 2018

\(\frac{5}{6}+\frac{11}{12}+\frac{19}{20}+\frac{29}{30}+\frac{41}{42}+\frac{55}{56}+\frac{71}{72}+\frac{89}{90}\)

\(=1-\frac{1}{6}+1-\frac{1}{12}+1-\frac{1}{20}+1-\frac{1}{30}+1-\frac{1}{42}+1-\frac{1}{56}+1-\frac{1}{72}+1-\frac{1}{90}\)

\(=8-\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}\right)\)

\(=8-\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{!}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}\right)\)

\(=8-\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+.....+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\right)\)

\(=8-\left(\frac{1}{2}-\frac{1}{10}\right)\)

\(=8-\frac{2}{5}=\frac{38}{5}\)

13 tháng 9 2020

 1/2+5/6+11/12+19/20+29/30+41/42+55/56+71/72+89/90
=1-1/2+1-1/6+1-1/12+1-1/20+1-1/30+1-1/42+1-1/56+1-1/72+1-1/90
=9 – (1/2+1/6+1/12+1/20+1/30+1/42+1/56+1/72+1/90)
=9 – [1/(1x2)+1/(2x3)+1/(3x4)+1/(4x5)+1/(5x6)+1/(6x7)+1/(7x8)+1/(8x9)+1/(9x10)]
=9 – ( 1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9+1/9-1/10)
=9 – (1 – 1/10) = 9 – 9/10
= 81/10

16 tháng 10 2015

=(1-1/2)+(1-1/6)+(1-1/12)+.......+(1-1/90)

= 9 - (1/2 +5/6 +1/12+.......+1/90)

= 9- (1-1/2 + 1/2 - 1/3+1/3 -1/4 +....... +1/9-1/10)

=9-(1-1/10)

=9-9/10=81/10 

 

9 tháng 8 2017

=(1-1/2)+(1-1/6)+(1-1/12)+.......+(1-1/90)

= 9 - (1/2 +5/6 +1/12+.......+1/90)

= 9- (1-1/2 + 1/2 - 1/3+1/3 -1/4 +....... +1/9-1/10)

=9-(1-1/10)

=9-9/10=81/10 

23 tháng 6 2016

=1 nhe

=(1-1/2)+(1-1/6)+(1-1/12)+...+(1-1/90)

=9-(1/2 + 5/6 + 1/12 + ... + 1/90)

=9-(1-1/2+1/2-1/3+1/3-1/4+...+1/9-1/10)

=9-(1-1/10)

=9-9/10=81/10

3 tháng 6 2018

Dấu \(.\)là dấu nhân 

Ta có : 

\(\frac{1}{2}+\frac{5}{6}+\frac{11}{12}+\frac{19}{20}+\frac{29}{30}+\frac{41}{42}+\frac{55}{56}+\frac{71}{72}+\frac{89}{90}\)

\(=\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{6}\right)+\left(1-\frac{1}{12}\right)+...+\left(1-\frac{1}{72}\right)+\left(1-\frac{1}{90}\right)\)

\(=\left(1+1+1+1+1+1+1+1+1\right)-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{72}+\frac{1}{90}\right)\)

\(=1.9-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{8.9}+\frac{1}{9.10}\right)\)

\(=9-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\right)\)

\(=9-\left(1-\frac{1}{10}\right)\)

\(=9-\frac{9}{10}\)

\(=\frac{90}{10}-\frac{9}{10}\)

\(=\frac{81}{10}\)

~ Ủng hộ nhé 

15 tháng 10 2018

\(\frac{1}{2}+\frac{5}{6}+\frac{11}{12}+\frac{19}{20}+...+\frac{89}{90}\)

\(=1-\frac{1}{2}+1-\frac{1}{6}+1-\frac{1}{12}+1-\frac{1}{20}+...+1-\frac{1}{90}\)

\(=9-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{90}\right)\)

\(=9-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\right)\)

\(=9-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{9}-\frac{1}{10}\right)\)

\(=9-\left(1-\frac{1}{10}\right)\)

\(=9-\frac{9}{10}=\frac{81}{10}\)

2 tháng 8 2015

A=(1-1/2)+(1-1/6)+(1-1/12)+(1-1/20)+(1-1/30)+(1-1/42)+(1-1/56)+(1-1/72)+(1-1/90)

A=(1+1+1+1+1+1+1+1+1)-(1/2+1/6+1/12+1/20+1/30+1/42+1/56+1/72+1/90)

A=9-(1/1x2+1/2x3+1/3x4+1/4x5+1/5x6+1/6x7+1/7x8+1/8x9+1/9x10)

A=9-(1/1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9+1/9-1/10)

A=9-(1/1-1/10)

A=9-(10/10-1/10)

A=9-9/10

A=90/10-9/10

A=81/10

Tích cho mk nha

2 tháng 8 2015

đơn giản:

\(A=\frac{1}{2}+\frac{5}{6}+\frac{11}{12}+\frac{19}{20}+\frac{29}{30}+\frac{41}{42}+\frac{55}{56}+\frac{71}{72}+\frac{89}{90}\)

\(A=\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{6}\right)+\left(1-\frac{1}{12}\right)+.....+\left(1-\frac{1}{90}\right)\)

\(A=\left(1+1+1+.....+1\right)-\left(\frac{1}{2}+\frac{1}{6}+....+\frac{1}{90}\right)\)

\(A=9-\left(\frac{1}{1x2}+\frac{1}{2x3}+\frac{1}{3x4}+\frac{1}{5x6}+....+\frac{1}{9x10}\right)\)

\(A=9-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\right)\)

\(A=9-\left(1-\frac{1}{10}\right)\)

\(A=9-\frac{9}{10}\)

\(A=\frac{90}{10}-\frac{9}{10}\)

\(A=\frac{81}{10}\)

20 tháng 5 2016

\(A=\frac{1}{2}+\frac{5}{6}+\frac{11}{12}+\frac{19}{20}+\frac{29}{30}+\frac{41}{42}+\frac{55}{56}+\frac{71}{72}+\frac{89}{90}\)

\(A=1-\frac{1}{2}+1-\frac{1}{6}+1-\frac{1}{12}+1-\frac{1}{20}+1-\frac{1}{30}+1-\frac{1}{41}+1\)\(-\frac{1}{56}+1-\frac{1}{72}+1-\frac{1}{90}\)

\(A=9-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}\right)\)

\(A=9-\left[1\div\left(1\times2\right)+1\div\left(2\times3\right)+1\div\left(3\times4\right)+1\div\left(4\times5\right)\right]\)\(+1\div\left(5\times6\right)+1\div\left(6\times7\right)+1\div\left(7\times8\right)+1\div\left(8\times9\right)\)\(+1\div\left(9\times10\right)\)]

\(A=9-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\right)\)\(+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\))

\(A=9-\left(1-\frac{1}{10}\right)\)

\(A=9-\frac{9}{10}\)

\(A=\frac{81}{10}\)

20 tháng 5 2016

\(A=1+1+...+1-\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{90}\right)\)

\(A=9-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{9.10}\right)\)

\(A=9-\left(\frac{2-1}{1.2}+\frac{3-2}{2.3}+...+\frac{10-9}{10.9}\right)\)

\(A=9-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\right)\)

\(A=9-\frac{9}{10}=\frac{81}{10}\)

18 tháng 6 2015

\(\frac{11}{12}+\frac{19}{20}+\frac{29}{30}+\frac{41}{42}+\frac{55}{56}+\frac{71}{72}+\frac{89}{90}+\frac{109}{110}\)

\(=\frac{12-1}{12}+\frac{20-1}{20}+\frac{30-1}{30}+\frac{42-1}{42}+\frac{56-1}{56}+\frac{72-1}{72}+\frac{90-1}{90}+\frac{110-1}{110}\)

\(=1-\frac{1}{12}+1-\frac{1}{20}+1-\frac{1}{30}+1-\frac{1}{42}+1-\frac{1}{56}+1-\frac{1}{72}+1-\frac{1}{90}+1-\frac{1}{110}\)

\(=8-\left(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}\right)\)

\(=8-\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}\right)\)

\(=8-\left(\frac{1}{3}-\frac{1}{11}\right)\)

\(=\frac{256}{33}\)

18 tháng 6 2015

ĐẶT A = \(\frac{11}{12}+\frac{19}{20}+\frac{29}{30}+...+\frac{109}{110}\)

   8 -A = \(1-\frac{11}{12}+1-\frac{19}{20}+1-\frac{29}{30}+1-\frac{41}{42}+1-\frac{55}{56}+1-\frac{71}{72}+1-\frac{89}{90}+1-\frac{109}{110}\)   

8 -A   \(=\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{10.11}\) 

8 -A = \(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{10}-\frac{1}{11}\)

8 - A = \(\frac{1}{3}-\frac{1}{11}=\frac{8}{33}\)

=> A = \(8-\frac{8}{33}=\frac{256}{33}\)