Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2/3+2/15+2/35+2/63+...+2/9999
=2/1.3+2/3.5+2/5.7+...+2/99x101
=1-1/3+1/3-1/5+...+1/99-1/101
=1-1/101=100/101
\(=2\times\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+...+\frac{1}{9999}\right)\)
\(=2\times\left(\frac{1}{1\times3}+\frac{1}{3\times5}+\frac{1}{5\times7}+...+\frac{1}{99\times101}\right)\)
\(=2\times\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(=2\times\left(\frac{1}{1}-\frac{1}{101}\right)\)
\(=2\times\frac{100}{101}\)
\(=\frac{200}{101}\)
\(\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+...+\frac{2}{9999}\)
\(=\frac{2}{1\times3}+\frac{2}{3\times5}+\frac{2}{5\times7}+...+\frac{2}{99\times101}\)
\(=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)
\(=\frac{1}{1}-\frac{1}{101}=\frac{101}{101}-\frac{1}{101}=\frac{100}{101}\)
Bài làm :
\(\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+\frac{2}{99}\)
\(=\frac{2}{1\times3}+\frac{2}{3\times5}+\frac{2}{5\times7}+\frac{2}{7\times9}+\frac{2}{9\times11}\)
\(=2\times\left(\frac{1}{1\times3}+\frac{1}{3\times5}+\frac{1}{5\times7}+\frac{1}{7\times9}+\frac{1}{9\times11}\right)\)
\(=2\times\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\right)\)
\(=2\times\left(1-\frac{1}{11}\right)\)
\(=2\times\frac{10}{11}\)
\(=\frac{20}{11}\)
Học tốt nhé
\(\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+\frac{2}{99}\)
\(=\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+\frac{2}{9\cdot11}\)
\(=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\)
\(=\frac{1}{1}-\frac{1}{11}=\frac{10}{11}\)
A=\(\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+...+\frac{1}{9999}=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{99.101}\)
=\(\frac{1}{2}.\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{99.101}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{101}\right)\)
Quy đồng tính tiếp
1/15 + 1/35 + 1/63 + 1/99 + ... + 1/9999 =
= 1/(3x5) + 1/(5x7) + 1/(7x9) + ... + 1/(99x101)
= (1/3 - 1/5 + 1/5 - 1/7 + 1/7 - 1/9 + ...+ 1/99 - 1/101) : 2
= (1/3 - 1/101) : 2
= 98/303 : 2
= 49/303
ĐS: 49/303
Tick nha
A = 1/15 + 1/35 + 1/ 63 + 1/99 + ...+ 1/9999
A = 1/(3x5) + 1/(5x7) + 1/(7x9) + 1/(9x11) + ... + 1/(99 x 101)
Ax2 = 2/(3x5) + 2/(5x7) + 2/(7x9) + 2/(9x11) + ... + 2/(99 x 101)
Ax2 = 1/3 – 1/5 + 1/5 – 1/7 + 1/7 – 1/9 + 1/9 – 1/11 + ...+ 1/99 – 1/101
Ax2 = 1/3 – 1/101 = 98/303
A = 98/303 : 2
A = 49/303
\(\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+...+\frac{1}{9999}\)
\(\Rightarrow\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{99.101}\)
\(\Rightarrow\frac{1}{2}\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{99.101}\right)\)
\(\Rightarrow\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(\Rightarrow\frac{1}{2}\left(\frac{1}{3}-\frac{1}{101}\right)\)
\(\Rightarrow\frac{1}{2}.\frac{98}{303}\)
\(\Rightarrow\frac{49}{303}\)
\(\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+...+\frac{2}{9999}\)
\(=\frac{2}{1.3}+\frac{2}{3.5}+\frac{1}{5.7}+....+\frac{2}{99.101}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\)
\(=1-\frac{1}{101}+0+0+...+0\)
\(=\frac{100}{101}\)