Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(K=\frac{10}{7.12}+\frac{10}{12.17}+\frac{10}{17.22}+...+\frac{10}{502.507}\)
\(\Leftrightarrow K=\frac{10}{5}\left(\frac{1}{7}-\frac{1}{12}+\frac{1}{12}-\frac{1}{17}+\frac{1}{17}-\frac{1}{22}+...+\frac{1}{502}-\frac{1}{507}\right)\)
\(\Leftrightarrow K=2\left(\frac{1}{7}-\frac{1}{507}\right)\)
\(\Leftrightarrow K=2\cdot\frac{500}{3549}\)
\(\Leftrightarrow K=\frac{1000}{3549}\)
\(B=2\left(\frac{5}{7.12}+\frac{5}{12.17}+...+\frac{5}{502.507}\right)\)
\(B=2\left(\frac{1}{7}-\frac{1}{12}+\frac{1}{12}-\frac{1}{17}+...+\frac{1}{502}-\frac{1}{507}\right)\)
\(B=2\left(\frac{1}{7}-\frac{1}{507}\right)\)
\(B=2\times\frac{500}{3549}\)
\(B=\frac{1000}{3549}\)
\(B=\frac{10}{7.12}+\frac{10}{12.17}+\frac{10}{17.22}+......+\frac{10}{502.507}\)
\(B=\frac{10}{5}.\left(\frac{5}{7.12}+\frac{5}{12.17}+\frac{5}{17.22}+........+\frac{5}{502.507}\right)\)
\(B=\frac{10}{5}.\left(\frac{1}{7}-\frac{1}{12}+\frac{1}{12}-\frac{1}{17}+\frac{1}{17}-\frac{1}{22}+.....+\frac{1}{502}-\frac{1}{507}\right)\)
\(B=\frac{10}{5}.\left(\frac{1}{7}-\frac{1}{507}\right)=2.\frac{500}{3549}=\frac{1000}{3549}\)
\(N=2015+\frac{10}{2.7}+\frac{10}{7.12}+\frac{10}{12.17}+\frac{10}{17.22}\)
\(=2\left(1007,5+\frac{5}{2.7}+\frac{5}{7.12}+\frac{5}{12.17}+\frac{5}{17.22}\right)\)
\(=2\left(1007,5+\frac{7-2}{2.7}+\frac{12-7}{7.12}+\frac{17-12}{12.17}+\frac{22-17}{17.22}\right)\)
\(=2\left(1007,5+\frac{1}{2}-\frac{1}{7}+\frac{1}{7}-\frac{1}{12}+\frac{1}{12}-\frac{1}{17}+\frac{1}{17}-\frac{1}{22}\right)\)
\(=2\left(1007,5+\frac{1}{2}-\frac{1}{22}\right)\)
\(=2015+1-\frac{1}{11}\)
\(=\frac{22175}{11}\)
N = \(2015+\frac{10}{2,7}+\frac{10}{7,12}+\frac{10}{12,17}+\frac{10}{17,22}=2021.510611\)
Đặt
\(A=\frac{5}{2.7}+\frac{5}{7.12}+\frac{5}{12.17}+\frac{5}{17.22}+\frac{5}{22.27}+\frac{5}{27.32}+\frac{5}{32.37}\)
\(A=\frac{1}{2}-\frac{1}{7}+\frac{1}{7}-\frac{1}{12}+\frac{1}{12}-\frac{1}{17}+\frac{1}{17}-\frac{1}{22}+\frac{1}{22}-\frac{1}{27}+\frac{1}{27}-\frac{1}{32}+\frac{1}{32}-\frac{1}{37}\)
\(A=\frac{1}{2}-\frac{1}{37}=\frac{35}{74}\)
\(=\frac{1}{2}-\frac{1}{7}+\frac{1}{7}-\frac{1}{12}+\frac{1}{12}-\frac{1}{17}+...+\frac{1}{32}-\frac{1}{37}\)
\(=\frac{1}{2}-\frac{1}{37}\)
\(=\frac{37}{74}-\frac{2}{74}=\frac{35}{74}\)
D = \(\dfrac{3}{5.8}+\dfrac{3}{8.11}+\dfrac{3}{11.14}+...+\dfrac{3}{2006.2009}\)
= \(\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{14}+...+\dfrac{1}{2006}-\dfrac{1}{2009}\)
= \(\dfrac{1}{5}-\dfrac{1}{9}=\dfrac{2004}{10045}\)
C = \(\dfrac{10}{7.12}+\dfrac{10}{12.17}+\dfrac{10}{17.22}+...+\dfrac{10}{502.507}\)
= \(\dfrac{10}{5}\left(\dfrac{5}{7.12}+\dfrac{5}{12.17}+\dfrac{5}{17.22}+...+\dfrac{5}{502.507}\right)\)
= \(\dfrac{10}{5}\left(\dfrac{1}{7}-\dfrac{1}{12}+\dfrac{1}{12}-\dfrac{1}{17}+\dfrac{1}{17}-\dfrac{1}{22}+....+\dfrac{1}{502}-\dfrac{1}{507}\right)\)
= \(\dfrac{10}{5}\left(\dfrac{1}{5}-\dfrac{1}{507}\right)\)
= \(\dfrac{10}{5}.\dfrac{502}{2535}\)
= \(\dfrac{1000}{3549}\)
Cho S=\(\frac{5}{2.7}+\frac{5}{7.12}+...+\frac{5}{22.27}\)
\(=\frac{1}{2}-\frac{1}{7}+\frac{1}{7}-\frac{1}{12}+...+\frac{1}{22}-\frac{1}{27}\)
\(=\frac{1}{2}-\frac{1}{27}=\frac{25}{54}\)
kb nha mn!
\(\frac{5}{2}-\frac{5}{7}+\frac{5}{7}-\frac{5}{12}+\frac{5}{12}-\frac{5}{17}+\frac{5}{17}-\frac{5}{22}+\frac{5}{22}-\frac{5}{29}=\frac{5}{2}-0-0-0-0-\frac{5}{29}=\frac{5}{2}-\frac{5}{29}=\frac{145}{58}-\frac{10}{58}=\frac{135}{58}\)
Nếu ai có giải dùm mình thì giải từng phần nhưng đừng chỉ ghi kết quả nhé~
a,\(\frac{2004}{10045}\)
b,\(\frac{25}{609}\)
c,\(\frac{1000}{3549}\)
d,\(\frac{25}{258}\)
\(\Rightarrow C=\frac{10}{5}\left(\frac{1}{7.12}+\frac{1}{12.17}+\frac{1}{17.22}+...+\frac{1}{502.507}\right)\)
\(\Rightarrow C=2.\left(\frac{1}{7}-\frac{1}{12}+\frac{1}{12}-\frac{1}{17}+....+\frac{1}{507}-\frac{1}{507}\right)\)
\(\Rightarrow C=2.\left(\frac{1}{7}-\frac{1}{507}\right)=2.\frac{1}{7}-2.\frac{1}{507}=\frac{2}{7}-\frac{2}{507}\)