Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có: \(\dfrac{27}{37}< \dfrac{27}{18};\dfrac{27}{18}< \dfrac{28}{18}\Rightarrow\dfrac{27}{37}< \dfrac{28}{18}\)
b, Ta có: \(1-\dfrac{2003}{2005}=\dfrac{2}{2005}\)
\(1-\dfrac{2001}{2003}=\dfrac{2}{2003}\)
Vì \(\dfrac{2}{2005}< \dfrac{2}{2003}\Rightarrow\dfrac{2003}{2005}>\dfrac{2001}{2003}\)
Ta có:\(\frac{2003.2004-2001}{2002.2003+2005}=\frac{\left(2002+1\right).2004-2001}{2002.\left(2004-1\right)+2005}\)
=\(\frac{2002.2004+2004-2001}{2002.2004-2002+2005}\)
=\(\frac{2002.2004+3}{2002.2004+2005-2002}\)
=\(\frac{2002.2004+3}{2002.2004+3}\)=1
Vay\(\frac{2003.2004-2001}{2002.2003+2005}=1\)
(2003*14+1988+2001*2002) / ( 2002 + 2002 * 503 + 2002 * 504 )
=4036042:2018016
=2
Ta có :
\(A=\frac{3}{4.5}+\frac{3}{5.6}+\frac{3}{6.7}+...+\frac{3}{99.100}\)
\(A=3\left(\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{99.100}\right)\)
\(A=3\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(A=3\left(\frac{1}{4}-\frac{1}{100}\right)\)
\(A=3.\frac{6}{25}\)
\(A=\frac{18}{25}\)
Vậy \(A=\frac{18}{25}\)
Chúc bạn học tốt ~
\(A=\frac{3}{4.5}+\frac{3}{5.6}+\frac{3}{6.7}+...+\frac{3}{99.100}\)
\(\Rightarrow A=3.\left(\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{99.100}\right)\)
\(\Rightarrow A=3.\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(\Rightarrow A=3.\left(\frac{1}{4}-\frac{1}{100}\right)=\frac{3.24}{100}\)
\(=\frac{3.4.6}{25.4}\)
\(\Rightarrow A=\frac{18}{25}\)
A = 2003 × 2002 - 2/2001 × 2003 + 2001
A = 2003 × (2001 + 1) - 2/2001 × 2003 + 2001
A = 2003 × 2001 + (2003 - 2)/2001 × 2003 + 2001
A = 2003 × 2001 + 2001/2001 × 2003 + 2001
A = 1