Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,\(A=1993^{1^{2\times3\times4\times...\times1994}}=1993^1=1993\)
b,\(B=1994^{\left(225-1^2\right)\times\left(225-2^2\right).....\left(225-50^2\right)}\)
\(=1994^{\left(225-1^2\right)\times\left(225-2^2\right)...\left(225-15^2\right)...\left(225-50^2\right)}\)
\(=1994^{\left(225-1^2\right)\times\left(225-2^2\right)...\left(225-225\right)...\left(225-50^2\right)}\)
\(=1994^{\left(225-1^2\right)\times\left(225-2^2\right)...\times0\times...\left(225-50^2\right)}\)
\(=1994^0=1\)
c, \(C=\frac{2^{10}\times3^{31}+2^{40}\times3^6}{2^{11}\times3^{31}+2^{41}\times3^6}\)
\(=\frac{2^{10}\times3^6\times\left(1\times3^{25}+2^{30}\times1\right)}{2^{11}\times3^6\times\left(1\times3^{25}+2^{30}\times1\right)}\)
\(=\frac{2^{10}}{2^{11}}=\frac{1}{2}\)
Ta có : D = (1 + 2 + 22 + 23 + ....... + 22004) - 22005
Đặt A = 1 + 2 + 22 + 23 + ....... + 22004
=> 2A = 2 + 22 + 23 + ....... + 22005
=> 2A - A = 22005 - 1
=> A = 22005 - 1
Thay vào ta có : D = (1 + 2 + 22 + 23 + ....... + 22004) - 22005
=> D = 22005 - 1 - 22005
=> D = -1
Trả lời
Ta có
\(\left(100a+3b+1\right)\left(2^a+10a+b\right)=225\left(1\right)\)
Mà 225 là số lẻ nên \(\hept{\begin{cases}100a+3b+1\\2^a+10a+b\end{cases}}\)cùng lẻ (2)
*) Với a=0 ta có
Từ (1)<=>(100.0+3b+1)(\(2^0\)+10.0+b)=225
<=>(3b+1)(1+b)=225=\(3^2.5^2\)
Do 3b+1 :3 dư 1 và 3b+1>1+b
Nên (3b+1)(1+b)=25.9\(\Rightarrow\hept{\begin{cases}3b+1=25\\1+b=9\end{cases}\Leftrightarrow b=8}\)
*) Với a\(\ne\)0 (a\(\in N\)), ta có:
Khi đó 100a là số chẵn, từ (2)=>3b+1 lẻ=>b chẵn
\(\Rightarrow2^a+10a+b\)chẵn, trái với (2)
\(\Rightarrow b=\varnothing\)
Vậy \(\hept{\begin{cases}a=0\\b=8\end{cases}}\)
Do a, b là các số tự nhiên nên 100a + 3b + 1 và 2a + 10a + b cũng là các số tự nhiên.
Ta có 225 = 32.52 nên \(Ư\left(225\right)=\left\{1;3;5;9;15;25;45;75;225\right\}\)
Nếu a = 0 thì ta có (3b + 1)(1 + b) = 225
Do 1 + b < 3b + 1 nên ta có bảng:
1 + b | 1 | 3 | 5 | 9 | 15 |
b | 0 | 2 | 4 | 8 | 14 |
1 + 3b | 4 | 10 | 16 | 25 | 43 |
L | L | L | TM | L |
Vậy ta có a = 0, b = 8.
Với a khác 0, ta có 100a > 100. Vậy thì 100a+ 3b + 1 = 225 hay a = 1 hoặc a = 2
Với a = 1, ta có: 12 + b = 1 (L)
Với a = 2, ta có: 24 + b = 1 (L)
Vậy tóm lại ta tìm được a = 0, b = 8.
Câu A mình làm được nhưng dài quá
B=\(\left(1+\frac{1}{2}\right).\left(1+\frac{1}{3}\right).............\left(1+\frac{1}{2015}\right)\)
=\(\frac{3}{2}.\frac{4}{3}..............\frac{2016}{2015}\)
=\(\frac{3.4...............2016}{2.3................2015}\)
=\(\frac{2016}{2}=1008\)
A=1
vì có mũ là 225-15^2=0
suy ra cả mũ bằng 0
hay A=1994^0=1