Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(A=\frac{1+\left(1+2\right)+\left(1+2+3\right)+...+\left(1+2+3+...+2017\right)}{1.2+2.3+3.4+...+2017.2018}\)
\(A=\frac{\frac{2}{2}+\frac{2\left(2+1\right)}{2}+\frac{3\left(3+1\right)}{2}+...+\frac{2017\left(2017+1\right)}{2}}{1.2+2.3+3.4+...+2017.2018}\)
\(A=\frac{\frac{2}{2}+\frac{2.3}{2}+\frac{3.4}{2}+...+\frac{2017.2018}{2}}{1.2+2.3+3.4+...+2017.2018}\)
\(A=\frac{\frac{1.2+2.3+3.4+...+2017.2018}{2}}{1.2+2.3+3.4+...+2017.2018}\)
\(A=\frac{1.2+2.3+3.4+...+2017.2018}{2}.\frac{1}{1.2+2.3+3.4+...+2017.2018}\)
\(A=\frac{1}{2}\)
Vậy \(A=\frac{1}{2}\)
Chúc bạn học tốt ~
A = 1.2 + 2.3 + 3.4 + ....... + 99.100
3A = 1.2.3 + 2.3.3 + 3.4.3 + ....... + 99 . 100 . 3
3A = 1.2.3 + 2.3.(4-1) + 3.4.(5-2) +.... + 99.100.(101-98)
3A = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ..... + 99 . 100 . 101 - 98 . 99 . 100
3A = (1.2.3 - 1.2.3) + (2.3.4-2.3.4) + ... + (98.99.100 - 98.99.100) + 99 . 100 . 101
3A = 99 . 100 . 101 = 999900
A = 999900 : 3
A = 333300
1. 3S= 1.2.(3-0)+ 2.3.(4-1)+...+ n.(n+1).[(n+2)-(n-1)]
=[1.2.3+ 2.3.4+...+ (n-1)n(n+1)+ n(n+1)(n+2)]- [0.1.2+ 1.2.3+...+(n-1)n(n+1)]
=n(n+1)(n+2)
=>S
Biểu thức này dùng để tính tổng 1^2+..+n^2 rất tiện và thực tế cũng là ket quả của hệ quả trên.
dùng cách thức tương tự có thể tính S=1.2.3+...+ n(n+1)(n+2) từ đó suy ra tổng 1^3+...+n^3
Việc sử dụng trước kết quả tổng 1^2+...+n^2 theo tôi là ngược tiến trình.
2. S = 1.2.3 + 2.3.4 +..+ (n-1).n.(n+1)
4S = 1.2.3.4 + 2.3.4.4 + 3.4.5.4 +..+ (n-1)n(n+1).4
ghi dọc cho dễ nhìn:
(k-1)k(k+1).4 = (k-1)k(k+1)[(k+2) - (k-2)] = (k-1)k(k+1)(k+2) - (k-2)(k-1)k(k+1)
ad cho k chạy từ 2 đến n ta có:
1.2.3.4 = 1.2.3.4
2.3.4.4 = 2.3.4.5 - 1.2.3.4
3.4.5.4 = 3.4.5.6 - 2.3.4.5
...
(n-2)(n-1)n.4 = (n-2)(n-1)n(n+1) - (n-3)(n-2)(n-1)n
(n-1)n(n+1).4 = (n-1)n(n+1)(n+2) - (n-2)(n-1)n(n+1)
+ + cộng lại vế theo vế + + (chú ý cơ chế rút gọn)
4S = (n-1)n(n+1)(n+2)
3.
\(S=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2017.2018}+\frac{1}{2018.2019}\)
\(S=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}+\frac{1}{2018}-\frac{1}{2019}\)
( gạch bỏ các phân số giống nhau)
\(S=1-\frac{1}{2019}\)
\(S=\frac{2018}{2019}\)
CHÚC BN HỌC TỐT!!!!
S=1/1.2+1/2.3+1/3.4+............1/2017.2018+1/2018.2019
S=1/2.(1+1/3.2+1/3.2+.............1/2017.1009+1/1009.2019)
S=1/4.(2+2/3.2+2/3.2+..............2/2017.1009+2/1009.2019)
S=1/4.(1-1/2+1/2-1/3+1/3+..........+1/1009-1/1009+1/2019)
S=1/4.(1-1/2019)
S=1/4.2018/2019=1009/4038
D=1.2+2.3+3.4+...+2017.2018
=>3D=1.2.3+2.3.3+3.4.3+...+2017.2018.3
=>3D=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+...+2017.2018.(2019-2016)
=>3D=1.2.3-0.1.2+2.3.4-1.2.3+3.4.5-2.3.4+...+2017.2018.2019-2016.2017.2018
=>3D=2017.2018.2019/3
=>D=2739315938
k mk nha $_$
:D
`x/(1.2)+x/(2.3)+x/(3.4)+.....+x/(2017.2018)=1`
`-> x/1 - x/2 +x/2-x/3+x/3-x/4+........+x/2017-x/2018=1`
`-> x-x/2018=1`
`-> 2017/2018 .x=1`
`-> x=2018/2017`
(1.2 + 2.3 + 3.4 + ... + 2018.2019) - (12 + 22 + ... + 20182)
= (1.2 + 2.3 + ... + 2018.2019) - (1.1 + 2.2 + ... + 2018.2018)
= (1.2 + 2.3 + ... + 2018.2019) - [1.(2 - 1) + 2.(3 - 1) + ... + 2018.(2019 - 1)]
= (1.2 + 2.3 + ... + 2018.2019) - (1.2 + 2.3 + ... + 2018.2019 - 1 - 2 - 3 - ... - 2018)
= (1.2 + 2.3 + ... + 2018.2019) - [1.2 + 2.3 + ... + 2018.2019 - (1 + 2 + ... + 2018)]
= (1.2 + 2.3 + ... + 2018.2019) - (1.2 + 2.3 + ... + 2018.2019) + (1 + 2 + 3 + ... + 2018)
= 1 + 2 + ... + 2018 (có : (2018 - 1) : 1 + 1 = 2018 (số))
= (2018 + 1).2018 : 2
= 2037171
a) \(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{2017\cdot2018}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2017}-\frac{1}{2018}\)
\(=1-\frac{1}{2018}\)
\(=\frac{2017}{2018}\)
b) \(\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{97\cdot99}\)( sửa 91.99 thành 97.99 mới đúng nha )
\(=\frac{1}{2}\left(\frac{2}{3}-\frac{2}{5}+\frac{2}{5}-\frac{2}{7}+...+\frac{2}{97}-\frac{2}{99}\right)\)
\(=\frac{1}{2}\left(\frac{2}{3}-\frac{2}{99}\right)\)
\(=\frac{1}{2}.\frac{64}{99}\)
\(=\frac{32}{99}\)
a) 1/1.2 + 1/2.3 + 1/3.4 +...+1/2017.2018
= 1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ....+1/2017 - 1/2018
= 1 - 1/2018
= 2017/2018