Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 2
làm câu B;C nha
B)
\(27^3=\left(3^3\right)^3=3^9\)
\(9^5=\left(3^2\right)^5=3^{10}\)
vì \(10>9\)
\(=>9^5>27^3\)
C)
\(\left(\frac{1}{8}\right)^6=\left(\frac{1}{2^3}\right)^6=\frac{1^6}{2^{18}}=\frac{1}{2^{18}}\)
\(\left(\frac{1}{32}\right)^4=\left(\frac{1}{2^5}\right)^4=\frac{1^4}{2^{20}}=\frac{1}{2^{20}}\)
vì \(2^{18}< 2^{20}\)
\(=>\frac{1}{2^{18}}>\frac{1}{2^{20}}\)
\(=>\left(\frac{1}{8}\right)^6>\left(\frac{1}{32}\right)^4\)
\(\text{A.}\frac{32^3.9^5}{8^3.6^6}=\frac{\left(2^5\right)^3.\left(3^2\right)^5}{\left(2^3\right)^3.\left(2.3\right)^6}=\frac{2^{15}.3^{10}}{2^9.2^6.3^6}=\frac{3^{10}}{3^6}=3^4=81\)
\(\text{B.}\frac{\left(5^5-5^4\right)^3}{50^6}=\frac{2500^3}{50^6}=\frac{\left(50^2\right)^3}{50^6}=\frac{50^6}{50^6}=1\)
Bài 2:
\(\text{A.Ta có:}\)
\(5^6=\left(5^3\right)^2=125^2\)
\(\left(-2\right)^{14}=2^{14}=\left(2^7\right)^2=128^2\)
Vì \(125< 128\)
\(\Rightarrow125^2< 128^2\)
\(\Rightarrow5^6< \left(-2\right)^{14}\)
\(\text{B.Ta có:}\)
\(9^5=\left(3^2\right)^5=3^{10}\)
\(27^3=\left(3^3\right)^3=3^9\)
Vì \(9< 10\)
\(\Rightarrow3^9< 3^{10}\)
\(\Rightarrow27^3< 9^5\)
\(\text{C.Ta có:}\)
\(\left(\frac{1}{8}\right)^6=\left[\left(\frac{1}{2}\right)^3\right]^6=\left(\frac{1}{2}\right)^{18}\)
\(\left(\frac{1}{32}\right)^4=\left[\left(\frac{1}{2}\right)^5\right]^4=\left(\frac{1}{2}\right)^{20}\)
Vì \(18< 20\)
\(\Rightarrow\left(\frac{1}{2}\right)^{18}< \left(\frac{1}{2}\right)^{20}\)
\(\Rightarrow\left(\frac{1}{8}\right)^6< \left(\frac{1}{32}\right)^4\)
a)\(\frac{4^5.9^4-2.6^9}{2^{10}.3^8+6^8.20}=\frac{\left(2^2\right)^5.\left(3^2\right)^4-2.\left(2.3\right)^9}{2^{10}.3^8+\left(3.2\right)^8.2^2.5}=\frac{2^{10}.3^8-2.2^9.3^9}{2^{10}.3^8+3^8.2^8.2^2.5}=\frac{2^{10}.3^8-2^{10}.3^9}{2^{10}.3^8+3^8.2^{10}.5}\)
\(=\frac{2^{10}.3^8.\left(1-3\right)}{2^{10}.3^8.\left(1+5\right)}=\frac{-2}{6}=\frac{-1}{3}\)
b) đặt A=2100 - 299 + 298 - 297 +...+ 22 - 2
=>2A=2101-2100+299-298+...+23-22
=>2A+A=2101-2100+299-298+...+23-22+2100 - 299 + 298 - 297 +...+ 22 - 2
=>3A=2101-2
=>A=\(\frac{2^{101}-2}{3}\)
Vì \(x=9\Rightarrow x+1=10\)
Thay x+1=10 vào biểu thức C ta dduojcw :
\(C=x^{14}-\left(x+1\right)x^{13}+\left(x+1\right)x^{12}-...-\left(x+1\right)x+10\)
\(=x^{14}-x^{14}-x^{13}+x^{13}+x^{12}-...-x^2-x+10\)
\(=-x+10\)
\(=-9+10\)
\(=1\)
\(\text{Theo đề ta có :}\)
\(\frac{\left(-1\right)^6\cdot3^5\cdot4^3}{9^2\cdot2^5}\)
= \(\frac{1\cdot3^5\cdot\left(2^2\right)^3}{\left(3^2\right)^2\cdot2^5}\) = \(\frac{3^5\cdot2^6}{3^4\cdot2^5}=\frac{3^4\cdot3\cdot2^5\cdot2}{3^4\cdot2^5}=3\cdot2=6\)