Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{121212}{161616}-\left(\frac{151515}{323232}-x\right)=2\)
=> \(\frac{3}{4}-\left(\frac{15}{32}-x\right)=2\)
=> \(\frac{15}{32}-x=\frac{3}{4}-2\)
=> \(\frac{15}{32}-x=-\frac{5}{4}\)
=> \(x=\frac{15}{32}-\frac{-5}{4}=\frac{15}{32}+\frac{5}{4}=\frac{55}{32}\)
b) \(\frac{x}{2}+\frac{x}{6}+\frac{x}{12}+\frac{x}{20}+\frac{x}{30}+\frac{x}{42}+\frac{x}{56}+\frac{x}{72}+\frac{x}{90}=\frac{9}{5}\)
=> \(\frac{x}{1\cdot2}+\frac{x}{2\cdot3}+\frac{x}{3\cdot4}+\frac{x}{4\cdot5}+\frac{x}{5\cdot6}+\frac{x}{6\cdot7}+\frac{x}{7\cdot8}+\frac{x}{8\cdot9}+\frac{x}{9\cdot10}=\frac{9}{5}\)
=> \(\frac{x}{1}-\frac{x}{2}+\frac{x}{2}-\frac{x}{3}+...+\frac{x}{9}-\frac{x}{10}=\frac{9}{5}\)
=> \(\frac{x}{1}-\frac{x}{10}=\frac{9}{5}\)
=> \(\frac{10x-x}{10}=\frac{9}{5}\)
=> \(\frac{9x}{10}=\frac{9}{5}\)
=> \(\frac{9x}{10}=\frac{9\cdot2}{5\cdot2}=\frac{18}{10}\)
=> x = 2
Gọi tổng đó là tổng S
Ta có: S = 1/6+1/12+1/30+1/42+1/56+1/72+1/90
=> S = 1/2.3+1/3.4+1/4.5+1/5.6+1/6.7+1/7.8+1/8.9+1/9.10
=> S = 1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9+1/9-1/10
=> S = 1/2-1/10
=> S = 5/10-1/10
=> S=4/10
=> S=2/5
Lời giải:
PT $\Leftrightarrow (\frac{x+1}{2022}+1)+(\frac{x+2}{2021}+1)+...+(\frac{x+23}{2000}+1)=0$
$\Leftrightarrow \frac{x+2023}{2022}+\frac{x+2023}{2021}+...+\frac{x+2023}{2000}=0$
$\Leftrightarrow (x+2023)(\frac{1}{2022}+\frac{1}{2021}+...+\frac{1}{2000})=0$
Dễ thấy tổng trong () luôn dương
$\Rightarrow x+2023=0$
$\Leftrightarrow x=-2023$
\(A=\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}+\frac{1}{132}\)
\(=\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}+\frac{1}{11.12}\)
\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}\)
\(=\frac{7}{60}\)
\(\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}+\dfrac{1}{110}\)
\(=\dfrac{1}{7\cdot8}+\dfrac{1}{8\cdot9}+\dfrac{1}{9\cdot10}+\dfrac{1}{10\cdot11}\)
\(=\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{11}\)
\(=\dfrac{1}{7}-\dfrac{1}{11}\)
\(=\dfrac{11}{77}-\dfrac{7}{77}\)
\(=\dfrac{4}{77}\)
\(=\dfrac{1}{7.8}+\dfrac{1}{8.9}+\dfrac{1}{9.10}+\dfrac{1}{10.11}=\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{11}\)
\(=\dfrac{1}{7}-\dfrac{1}{11}=\dfrac{11}{77}-\dfrac{7}{77}=\dfrac{4}{77}\)