Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi biểu thức trên là S. Ta có :
\(S=\dfrac{1}{1\times2\times3}+\dfrac{1}{2\times3\times4}+\dfrac{1}{3\times4\times5}+...+\dfrac{1}{18\times19\times20}\)
\(=\dfrac{1}{2}\times\left(\dfrac{2}{1\times2\times3}+\dfrac{2}{2\times3\times4}+\dfrac{2}{3\times4\times5}+...+\dfrac{2}{18\times19\times20}\right)\)
Trước tiên, ta áp dụng : \(\dfrac{2}{a\left(a+1\right)\left(a+2\right)}=\dfrac{1}{a\left(a+1\right)}-\dfrac{1}{\left(a+1\right)\left(a+2\right)}\)
Ta sẽ có :
\(S=\dfrac{1}{2}\times\left(\dfrac{1}{1\times2}-\dfrac{1}{2\times3}+\dfrac{1}{2\times3}-\dfrac{1}{3\times4}+\dfrac{1}{3\times4}-\dfrac{1}{4\times5}+...+\dfrac{1}{18\times19}-\dfrac{1}{19\times20}\right)\)
\(=\dfrac{1}{2}\times\left(\dfrac{1}{1\times2}-\dfrac{1}{19\times20}\right)\)
\(=\dfrac{1}{2}\times\dfrac{1}{1\times2}-\dfrac{1}{2}\times\dfrac{1}{19\times20}\)
\(=\dfrac{1}{4}-\dfrac{1}{760}=\dfrac{189}{760}\)
A =1x2x3 + 2x3x4 +3x4x5+....+ 2010 x2011 x 2012
4A =1x2x3x4 + 2x3x4x4 +3x4x5x4+....+ 2010 x2011 x 2012x4
4A =1x2x3x4 + 2x3x4x(5+1) +3x4x5x(6-2)+....+ 2010 x2011 x 2012x(2013-2009)
4A =1x2x3x4 + 2x3x4x5-1x2x3x4+3x4x5x6-2x3x4x5+....+ 2010 x2011 x 2012x2013-2009x2010x2011x2012
4A = 2010 x2011 x 2012x2013
A = \(\frac{2010\times2011\times2012\times2013}{4}\)
Ta có:
\(A=\frac{1}{1\text{x}2\text{x}3}+\frac{1}{2\text{x}3\text{x}4}+\frac{1}{3\text{x}4\text{x}5}+...+\frac{1}{18\text{x}19\text{x}20}< \frac{1}{4}\)
\(A=1-\frac{1}{2}-\frac{1}{3}+\frac{1}{2}-\frac{1}{3}-\frac{1}{4}+...+\frac{1}{18}-\frac{1}{19}+\frac{1}{20}< \frac{1}{4}\)
\(A=1+\left(\frac{1}{2}-\frac{1}{2}\right)+\left(\frac{1}{3}-\frac{1}{3}\right)+\left(\frac{1}{4}-\frac{1}{4}\right)+...+\frac{1}{20}< \frac{1}{4}\)
\(A=1+\frac{1}{20}< \frac{1}{4}\)
\(A=\frac{19}{20}< \frac{1}{4}\)
\(A=\frac{19}{20}< \frac{5}{20}\)
\(A>\frac{1}{4}\)
Đặt \(A=\frac{1}{1\times2\times3}+\frac{1}{2\times3\times4}+\frac{1}{3\times4\times5}+...+\frac{1}{30\times31\times32}\)
\(2A=\frac{2}{1\times2\times3}+\frac{2}{2\times3\times4}+\frac{2}{3\times4\times5}+...+\frac{2}{30\times31\times32}\)
\(=\left(\frac{1}{1\times2}-\frac{1}{2\times3}\right)+\left(\frac{1}{2\times3}-\frac{1}{3\times4}\right)+\left(\frac{1}{3\times4}-\frac{1}{4\times5}\right)+...+\left(\frac{1}{30\times31}-\frac{1}{31\times32}\right)\)
\(=\frac{1}{1\times2}-\frac{1}{2\times3}+\frac{1}{2\times3}-\frac{1}{3\times4}+\frac{1}{3\times4}-\frac{1}{4\times5}+...+\frac{1}{30\times31}-\frac{1}{31\times32}\)
\(=\frac{1}{1\times2}-\frac{1}{31\times32}\)
\(=\frac{1}{2}-\frac{1}{992}\)
\(=\frac{495}{992}\)
\(\Rightarrow A=\frac{495}{992}\div2=\frac{495}{1984}\)
\(\frac{1}{1\times2\times3}+\frac{1}{2\times3\times4}+\frac{1}{3\times4\times5}+...+\frac{1}{30\times31\times32}\)
\(=\frac{1}{2}\times\left(\frac{1}{1\times2\times3}+\frac{1}{2\times3\times4}+\frac{1}{3\times4\times5}+...+\frac{1}{30\times31\times32}\right)\)
\(=\frac{1}{2}\times\left(\frac{1}{1\times2}-\frac{1}{2\times3}+\frac{1}{2\times3}-\frac{1}{3\times4}+\frac{1}{3\times4}-\frac{1}{4\times5}+...+\frac{1}{30\times31}-\frac{1}{31\times32}\right)\)
\(=\frac{1}{2}\times\left(\frac{1}{1\times2}-\frac{1}{31\times32}\right)\)
\(=\frac{1}{2}\times\frac{990}{1984}\)
\(=\frac{990}{3968}=\frac{495}{1984}\)
\(A=\frac{1}{1\times2\times3}+\frac{1}{2\times3\times4}+\frac{1}{3\times4\times5}+...+\frac{1}{36\times37\times38}+\frac{1}{37\times38\times39}\)
\(2A=\frac{2}{1\times2\times3}+\frac{2}{2\times3\times4}+\frac{2}{3\times4\times5}+...+\frac{2}{36\times37\times38}+\frac{2}{37\times38\times39}\)
\(2A=\frac{1}{1\times2}-\frac{1}{2\times3}+\frac{1}{2\times3}-\frac{1}{3\times4}+...+\frac{1}{37\times38}-\frac{1}{38\times39}\)
\(2A=\frac{1}{1\times2}-\frac{1}{38\times39}\)
\(2A=\frac{741}{1482}-\frac{1}{1482}\)
\(2A=\frac{370}{741}\)
\(A=\frac{370}{741}:2=\frac{185}{741}\)
=1/1x2-1/2x3+1/2x3-1/3x4+...+1/98x99-1/99x100
=1/2-1/9900
=4949/9900
Đặt C = \(\frac{1}{1\times2\times3}+\frac{1}{2\times3\times4}+...+\frac{1}{30\times31\times32}\)
\(2C=\frac{2}{1\times2\times3}+\frac{2}{2\times3\times4}+...+\frac{2}{30\times31\times32}\)
\(=\left(\frac{1}{1\times2}-\frac{1}{2\times3}\right)+\left(\frac{1}{2\times3}-\frac{1}{3\times4}\right)+...+\left(\frac{1}{30\times31}-\frac{1}{31\times32}\right)\)
\(=\frac{1}{1\times2}-\frac{1}{2\times3}+\frac{1}{2\times3}-\frac{1}{3\times4}+...+\frac{1}{30\times31}-\frac{1}{31\times32}\)
\(=\frac{1}{1\times2}-\frac{1}{31\times32}\)
\(=\frac{1}{2}-\frac{1}{992}=\frac{495}{992}\)
\(\Rightarrow C=\frac{495}{992}\div2=\frac{495}{1984}\)
Vậy ...
\(\frac{1}{1\times2\times3}+\frac{1}{2\times3\times4}+\frac{1}{3\times4\times5}+.....+\frac{1}{30\times31\times32}\)
\(=\frac{1}{2}\times\left(\frac{2}{1\times2\times3}+\frac{2}{2\times3\times4}+.....+\frac{2}{30\times31\times32}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+....+\frac{1}{30.31}-\frac{1}{31.32}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{31.32}\right)=\frac{1}{2}.\frac{990}{1984}=\frac{990}{3968}\)
S = \(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{2013.2014.2015}\)
S = \(\frac{1}{2}.\left(\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+....+\frac{2015-2013}{2013.2014.2015}\right)\)
S = \(\frac{1}{2}.\left(\frac{3}{1.2.3}-\frac{1}{1.2.3}+\frac{4}{2.3.4}-\frac{2}{2.3.4}+...+\frac{2015}{2013.2014.2015}-\frac{2013}{2013.2014.2015}\right)\)
S = \(\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{2013.2014}-\frac{1}{2014.2015}\right)\)
S = \(\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{2014.2015}\right)\)
S = \(\frac{1}{2}.\frac{2029104}{4058210}\)
S = \(\frac{1014552}{4058210}\)
\(=\dfrac{1}{1\cdot2}-\dfrac{1}{2\cdot3}+\dfrac{1}{2\cdot3}-\dfrac{1}{3\cdot4}+...+\dfrac{1}{18\cdot19}-\dfrac{1}{19\cdot20}\)
=1/2-1/380
=190/380-1/380
=189/380