Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho b+c=10, chứng minh hằng đẳng thức:
(10a+b)(10a+c)=100a(a+1)+bc
Áp dụng để tính nhẩm:62. 68; 43. 47
b+c=10 => b=10-c
Ta có:
(10a+b)(10a+c)
\(=\left(10a+10-c\right)\left(10a+c\right)\)
\(=100a^2+10ac+100a+10c-10ac-c^2\)
\(=100a^2+100a+10c-c^2\) (1)
Ta lại có:
\(100a\left(a+1\right)+bc=100a\left(a+1\right)+\left(10-c\right)c\)
\(=100a^2+100a+10c-c^2\) (2)
Từ (1)(2) suy ra (10a+b)(10a+c)=100a(a+1)+bc
Ta có:
\(62.68=\left(10.6+2\right)\left(10.6+8\right)=100.6.\left(6+1\right)+2.8=4216\)
\(43.47=\left(10.4+3\right)\left(10.4+7\right)=100.4.\left(4+1\right)+3.7=2021\)
100a(a + 1) + bc
= 100a^2 + 100a + bc
= 100a^2 + 10.10a + bc
= 100a^2 + (b + c).10a + bc (vì b + c = 10)
= 100a^2 + 10ab + 10ac + bc
= (100a^2 + 10ab) + (10ac + bc)
= 10a(10a + b) + c(10a + b)
= (10a + b)(10a + c)
áp dụng:
62.68= (10.6+2).(10.6+8)=100.6.(6+1)+2.8=4216
43.47=(10.4+3).(10.4+7)=100.4.(4+1)+3.7=2021
Thay x=-8 và y=6 cào C ta được:
\(C=\dfrac{\left(-8\right)^3}{2}+\dfrac{\left(-8\right)^2.6}{4}+\dfrac{\left(-8\right).6^2}{6}+\dfrac{6^3}{27}\)\(=\dfrac{-512}{2}+\dfrac{384}{4}-\dfrac{288}{6}+\dfrac{216}{27}\)\(=-256+96-48+8=-200\)
\(27x^3-54x^2y+36xy^2-8y^3\)
\(=\left(3x-2y\right)^3\)
Tại \(x=4;\)\(y=6\) thì gtbt là:
\(\left(3.4-2.6\right)^3=0\)
0,027x3 + 0,008y3 = (0,3x)3 + (0,2y)3 = (0,3x + 0,2y). (0,09x2 - 0,06xy + 0,04y2)
\(0,027x^3+0,008y^3=\left(0,3.x\right)^3+\left(0,2y\right)^3=\left(0,2+0,3\right)\left(0,2^2-0,2.0,3+0,3^2\right)=0,5.\left(0,04-0,06+0,09\right)=0,5.0,07=0,035\)
a) \(x^6-y^6\)
\(=\left(x^3\right)^2-\left(y^3\right)^2\)
\(=\left(x^3-y^3\right)\left(x^3+y^3\right)\)
\(=\left(x-y\right)\left(x^2+xy+y^2\right)\left(x+y\right)\left(x^2-xy+y^2\right)\)
b) \(10ab+0,25a^2+100b^2\)
\(=\left(0,5a\right)^2+2\cdot0,5a\cdot10b+\left(10b\right)^2\)
\(=\left(0,5a+10b\right)^2\)
c) \(9x^2-xy+\frac{1}{36}y^2\)
\(=\left(3x\right)^2-2\cdot3x\cdot\frac{1}{6}y+\left(\frac{1}{6}y\right)^2\)
\(=\left(3x-\frac{1}{6}y\right)^2\)
\(a,=\left(50-1\right)\left(50+1\right)\)
\(=50^2-1\)
\(=2499\)
\(b,55^2-45^2\)
\(=\left(55-45\right)\left(55+45\right)\)
\(=10.100\)
\(=1000\)
\(\text{a) }49.51=\left(50-1\right)\left(50+1\right)=50^2-1^2=2500-1=2499\)
\(\text{b) }55^2-45^2=\left(55+45\right)\left(55-45\right)=100.10=1000\)