K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 1 2018

\(\left\{\left[\left(2\sqrt{2}\right)^2:2,4\right]\left[5,25:\left(\sqrt{7}\right)^2\right]\right\}:\left\{\left[2\dfrac{1}{7}:\dfrac{\left(\sqrt{5}\right)^2}{7}\right]\right\}:\left[2^2:\dfrac{\left(2\sqrt{2}\right)^2}{\sqrt{81}}\right]\)\(=\left\{\left[\left(2.2\right)^2:2,4\right]\left[5,25:\left(7\right)^2\right]\right\}:\left\{\left[\dfrac{15}{7}:\dfrac{\left(5\right)^2}{7}\right]\right\}:\left[4:\dfrac{\left(2.2\right)^2}{9}\right]\)

\(=\left\{\left[\left(4\right)^2:2,4\right]\left[5,25:49\right]\right\}:\left\{\left[\dfrac{15}{7}:\dfrac{25}{7}\right]\right\}:\left[4:\dfrac{\left(4\right)^2}{9}\right]\)

\(=\left\{\left[16:2,4\right].\dfrac{3}{28}\right\}:\left\{\dfrac{3}{5}\right\}:\left[4:\dfrac{8}{9}\right]\)

\(=\left\{\dfrac{20}{3}.\dfrac{3}{28}\right\}:\dfrac{3}{5}:\dfrac{9}{2}\)

\(=\dfrac{5}{7}:\dfrac{3}{5}:\dfrac{9}{2}\)

\(=\dfrac{5}{7}.\dfrac{5}{3}:\dfrac{9}{2}\)

\(=\dfrac{25}{21}:\dfrac{9}{2}\)

\(=\dfrac{25}{21}.\dfrac{2}{9}\)

\(=\dfrac{25.2}{21.9}\)

\(=\dfrac{50}{189}.\)

Mình làm chi tiết rồi nha bạn :))

24 tháng 12 2023

\(a,\cdot\left\{\left[\left(2\sqrt{2}\right)^2:2,4\right]\cdot\left[5,25:\left(\sqrt{7}\right)^2\right]\right\}:\left\{\left[2\dfrac{1}{7}:\dfrac{\left(\sqrt{5}\right)^2}{7}\right]:\left[2^2:\dfrac{\left(2\sqrt{2}\right)^2}{\sqrt{81}}\right]\right\}\\ =\left[\left(8:2,4\right)\cdot\left(5,25:7\right)\right]:\left[\left(\dfrac{15}{7}:\dfrac{5}{7}\right):\left(4:\dfrac{8}{9}\right)\right]\\ =\left(\dfrac{10}{3}\cdot\dfrac{3}{4}\right):\left(3:\dfrac{9}{2}\right)\\ =\dfrac{5}{2}:\dfrac{2}{3}\\ =\dfrac{15}{4}\)

24 tháng 12 2023

a: \(\dfrac{\left\{\left[\left(2\sqrt{2}\right)^2:2,4\right]\cdot\left[5,25:\left(\sqrt{7}^2\right)\right]\right\}}{\left\{\left[2\dfrac{1}{7}:\dfrac{\left(\sqrt{5}\right)^2}{7}\right]:\left[2^2:\dfrac{\left(2\sqrt{2}\right)^2}{\sqrt{81}}\right]\right\}}\)

\(=\dfrac{\dfrac{8}{2,4}\cdot\dfrac{5,25}{7}}{\left(\dfrac{15}{7}:\dfrac{5}{7}\right):\left(4:\dfrac{8}{9}\right)}\)

\(=\dfrac{\dfrac{10}{3}\cdot\dfrac{3}{4}}{3:\left(4\cdot\dfrac{9}{8}\right)}\)

\(=\dfrac{\dfrac{10}{4}}{3:\left(\dfrac{9}{2}\right)}=\dfrac{5}{2}:\left(3\cdot\dfrac{2}{9}\right)=\dfrac{5}{2}:\dfrac{2}{3}=\dfrac{15}{4}\)

b: \(\sqrt{\left(x-\sqrt{2}\right)^2}=\left|x-\sqrt{2}\right|>=0\forall x\)

\(\sqrt{\left(y+\sqrt{2}\right)^2}=\left|y+\sqrt{2}\right|>=0\forall y\)

\(\left|x+y+z\right|>=0\forall x,y,z\)

Do đó: \(\sqrt{\left(x-\sqrt{2}\right)^2}+\sqrt{\left(y+\sqrt{2}\right)^2}+\left|x+y+z\right|>=0\forall x,y,z\)

Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x-\sqrt{2}=0\\y+\sqrt{2}=0\\x+y+z=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=\sqrt{2}\\y=-\sqrt{2}\\z=0\end{matrix}\right.\)

\(=\left(8+2.4\right)\left(5.25:7\right):\left\{\left[\dfrac{15}{7}+\dfrac{5}{7}\right]:\left[4:\dfrac{8}{9}\right]\right\}\)

\(=10.4\cdot\dfrac{3}{4}:\left\{\dfrac{20}{7}:\dfrac{9}{2}\right\}\)

\(=7.8:\dfrac{40}{63}=12.285\)

31 tháng 12 2023

a: \(\left(18\dfrac{1}{3}:\sqrt{225}+8\dfrac{2}{3}\cdot\sqrt{\dfrac{49}{4}}\right):\left[\left(12\dfrac{1}{3}+8\dfrac{6}{7}\right)-\dfrac{\left(\sqrt{7}\right)^2}{\left(3\sqrt{2}\right)^2}\right]:\dfrac{1704}{445}\)

\(=\left(\dfrac{55}{3}:15+\dfrac{26}{3}\cdot\dfrac{7}{4}\right):\left[\left(12+\dfrac{1}{3}+8+\dfrac{6}{7}\right)-\dfrac{7}{18}\right]\cdot\dfrac{445}{1704}\)

\(=\left(\dfrac{55}{45}+\dfrac{91}{6}\right):\left[20+\dfrac{101}{126}\right]\cdot\dfrac{445}{1704}\)

\(=\dfrac{295}{18}:\dfrac{2621}{126}\cdot\dfrac{445}{1704}\)

\(=\dfrac{295}{18}\cdot\dfrac{126}{2621}\cdot\dfrac{445}{1704}\simeq0,21\)

b: \(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{99\cdot100}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

\(=1-\dfrac{1}{100}=\dfrac{99}{100}\)

c: \(\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\cdot...\cdot\left(1-\dfrac{1}{n+1}\right)\)

\(=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot...\cdot\dfrac{n}{n+1}\)

\(=\dfrac{1}{n+1}\)

d: \(-66\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{11}\right)+124\cdot\left(-37\right)+63\cdot\left(-124\right)\)

\(=-66\cdot\dfrac{33-22+6}{66}+124\left(-37-63\right)\)

\(=-17-12400=-12417\)

e: \(\dfrac{7}{4}\left(\dfrac{33}{12}+\dfrac{3333}{2020}+\dfrac{333333}{303030}+\dfrac{33333333}{42424242}\right)\)

\(=\dfrac{7}{4}\left(\dfrac{33}{12}+\dfrac{33}{20}+\dfrac{33}{30}+\dfrac{33}{42}\right)\)

\(=\dfrac{7}{4}\cdot33\cdot\left(\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}\right)\)

\(=33\cdot\dfrac{7}{4}\left(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}\right)\)

\(=33\cdot\dfrac{7}{4}\cdot\left(\dfrac{1}{3}-\dfrac{1}{7}\right)\)

\(=33\cdot\dfrac{7}{4}\cdot\dfrac{4}{21}=\dfrac{33\cdot1}{3}=11\)

\(\sqrt{\dfrac{16}{49}}+\left(\dfrac{1}{2}\right)^3-\left|-\dfrac{4}{7}\right|-\dfrac{7}{8}\)

\(=\dfrac{4}{7}+\dfrac{1}{8}-\dfrac{4}{7}-\dfrac{7}{8}\)

\(=\dfrac{1}{8}-\dfrac{7}{8}=-\dfrac{6}{8}=-\dfrac{3}{4}\)

\(\left|\dfrac{1}{2}-\dfrac{3}{5}\right|\cdot\sqrt{9}+0,5\left(-2\dfrac{3}{5}\right)\)

\(=\left|\dfrac{5-6}{10}\right|\cdot3+\dfrac{1}{2}\cdot\dfrac{-13}{5}\)

\(=\dfrac{1}{10}\cdot3+\dfrac{1}{2}\cdot\dfrac{-13}{5}\)

\(=\dfrac{3}{10}-\dfrac{13}{10}=-\dfrac{10}{10}=-1\)

M=\(\left(\dfrac{55}{3}:15+\dfrac{26}{3}.\dfrac{7}{2}\right):\left[\left(\dfrac{37}{3}+\dfrac{62}{7}\right)-\dfrac{7}{18}\right]:\dfrac{1704}{445}\)

M=\(\left(\dfrac{11}{9}+\dfrac{91}{3}\right):\left[\dfrac{445}{21}-\dfrac{7}{18}\right]:\dfrac{1704}{445}\)

M=\(\dfrac{284}{9}:\dfrac{2621}{126}:\dfrac{1704}{445}\)

M=\(\dfrac{3115}{7863}\)

20 tháng 12 2022

a: \(=\dfrac{3}{4}-\dfrac{5}{6}+\dfrac{3}{2}=\dfrac{9-10+18}{12}=\dfrac{17}{12}\)

b: \(=\left(\dfrac{1}{9}+\dfrac{6}{9}\right)^2-\dfrac{1}{3}=\dfrac{49}{81}-\dfrac{27}{81}=\dfrac{22}{81}\)

c; \(=\dfrac{5}{11}\left(-\dfrac{3}{7}-\dfrac{5}{7}\right)+\dfrac{-8}{7}\cdot\dfrac{6}{11}=\dfrac{-8}{7}\left(\dfrac{5}{11}+\dfrac{6}{11}\right)=-\dfrac{8}{7}\)

d: \(=\dfrac{2^{26}}{2^{15}\cdot2^{12}}=\dfrac{1}{2}\)

11 tháng 8 2023

\(\left[-\sqrt{2,25}+4\sqrt{\left(-2,15\right)^2}-\left(3\sqrt{\dfrac{7}{6}}\right)^2\right]\sqrt{1\dfrac{9}{16}}\)

\(=\left[-1,5+4\sqrt{2,15^2}-9\cdot\dfrac{7}{6}\right]\sqrt{\dfrac{25}{16}}\)

\(=\left[4\cdot\dfrac{43}{20}-10,5-1,5\right]\cdot\dfrac{5}{4}\)

\(=\left[\dfrac{43}{5}-12\right]\cdot\dfrac{5}{4}\)

\(=\dfrac{43}{5}\cdot\dfrac{5}{4}-12\cdot\dfrac{5}{4}\)

\(=\dfrac{43}{4}-15=\dfrac{-17}{4}\)