Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 5\(\dfrac{4}{27}\) + \(\dfrac{6}{23}\) + 0,25 - \(\dfrac{4}{27}\) + \(\dfrac{17}{23}\)
= 5 + (\(\dfrac{4}{27}\) - \(\dfrac{4}{27}\)) + (\(\dfrac{6}{23}\) + \(\dfrac{17}{23}\)) + 0,25
= 5 + 1 + 0,25
= 6,25
b, 16.(\(\dfrac{1}{2}\))3 - \(\dfrac{3}{5}\): 0,75
= 16.\(\dfrac{1}{8}\) - 0,8
= 2 - 0,8
= 1,2
Đặt A=\(\frac{6}{-7}\)+ \(\frac{9}{4}\). \(\frac{2}{15}\)- \(\frac{2}{14}\)
A = \(\frac{6}{-7}\)+ \(\frac{3}{10}\)- \(\frac{2}{14}\)
A= \(\frac{-60}{70}\)+ \(\frac{21}{70}\)- \(\frac{10}{70}\)
A= \(\frac{-7}{10}\)
Ta có : \(C=\frac{1}{2}+\left(-\frac{2}{3}\right)+\left(-\frac{2}{3}\right)^2+\left(-\frac{2}{3}\right)^3+......+\left(-\frac{2}{3}\right)^{2018}\)
\(\Rightarrow C=\frac{1}{2}-\left(\frac{2}{3}+\left(\frac{2}{3}\right)^2+\left(\frac{2}{3}\right)^3+.....+\left(\frac{2}{3}\right)^{2018}\right)\)
Đặt \(\Rightarrow A=\frac{2}{3}+\left(\frac{2}{3}\right)^2+\left(\frac{2}{3}\right)^3+.....+\left(\frac{2}{3}\right)^{2018}\)
\(\Rightarrow\frac{2}{3}A=\left(\frac{2}{3}\right)^2+\left(\frac{2}{3}\right)^3+\left(\frac{2}{3}\right)^4+.....+\left(\frac{2}{3}\right)^{2019}\)
\(\Rightarrow A-\frac{2}{3}A=\frac{2}{3}-\frac{2}{3}^{2019}\)
\(\Rightarrow\frac{1}{3}A=\frac{2}{3}-\left(\frac{2}{3}\right)^{2019}\)
=> A = \(\left(\frac{2}{3}-\left(\frac{2}{3}\right)^{2019}\right).3\)
=> A = 2 - \(\frac{2^{2019}}{3^{2018}}\)
ta thấy
6,3 x 12-21 x 3,6 = 3,6 x 7/4 x 12 - 21 x 3,6 = 3,6 x 21 - 21 x 3,6 = 0
Vậy (1+2+..+100)X(6,3 x 12-21 x 3,6)x(1/3-1/5-1/7-1/9)=0
A xin lỗi mình viết sai đề để mình viết lại
(0,25 - 3/4) : 2/3 + (-1/2)^2
\(\left(0,25-\frac{3}{4}\right)\div\frac{2}{3}+\left(\frac{-1}{2}\right)^2\)2
\(=\left(\frac{1}{4}-\frac{3}{4}\right)\times\frac{3}{2}+\frac{1}{4}\)
\(=\frac{-1}{2}\times\frac{3}{2}+\frac{1}{4}\)
\(=\frac{-3}{4}+\frac{1}{4}\)
\(=\frac{-2}{4}=\frac{-1}{2}\)