Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(3x+y-z\right)-\left(4x-2y+6z\right)\)
\(=3x+y-z-4x+2y-6z\)
\(=-x+3y-7z\)
b) \(\left(x^3+6x^2+5y^3\right)-\left(2x^3-5x+7y^3\right)\)
\(=x^3+6x^2+5y^3-2x^3+5x-7y^3\)
\(=-x^3+6x^2+5x-2y^3\)
c) \(\left(5,7x^{2y}-3,1xy+8y^3\right)-\left(6,9xy-2,3x^{2y}-8y^3\right)\)
\(=5,7x^{2y}-3,1xy+8y^3-6,9xy+2,3x^{2y}+8y^3\)
\(=8x^{2y}-10xy+16y^3\)
Ta có :\(15x=10y=6z\Rightarrow\hept{\begin{cases}15x=10y\\10y=6z\end{cases}}\Rightarrow\hept{\begin{cases}3x=2y\\5y=3z\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\\frac{y}{3}=\frac{z}{5}\end{cases}}\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)
Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\Rightarrow\hept{\begin{cases}x=2k\\y=3k\\z=5k\end{cases}}\)
Khi đó 5x3 + 2y3 - z3 = 31
=> 5(2k)3 + 2(3k)3 - (5k)3 = 31
=> 40k3 + 54k3 - 125k3 = 31
=> -31k3 = 31
=> k3 = -1
=> k = -1
=> x = -2 ; y = -3 ; z = -5
b) Ta có 7x = 14y = 6z => \(\hept{\begin{cases}7x=14y\\14y=6z\end{cases}}\Rightarrow\hept{\begin{cases}x=2y\\7y=3z\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{2}=\frac{y}{1}\\\frac{y}{3}=\frac{z}{7}\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{6}=\frac{y}{3}\\\frac{y}{3}=\frac{z}{7}\end{cases}}\Rightarrow\frac{x}{6}=\frac{y}{3}=\frac{z}{7}\)
Đặt \(\frac{x}{6}=\frac{y}{3}=\frac{z}{7}=k\Rightarrow\hept{\begin{cases}x=6k\\y=3k\\z=7k\end{cases}}\)
Khi đó 2x2 - 3y2 = 5
<=> 2.(6k)2 - 3.(3k)2 = 5
=> 72k2 - 27k2 = 5
=> 45k2 = 5
=> k2 = 1/9
=> k = \(\pm\frac{1}{3}\)
Nếu k = 1/3 => x = 2 ; y = 1 ; z = 7/3
Nếu k = -1/3 => x = -2 ; y = - 1 ; z = -7/3
Vậy các cặp (x;y;z) thỏa mãn là : (2;1;7/3) ; (-2 ; - 1; -7/3)
c) Ta có : \(3x=8y=5z\Rightarrow\frac{3x}{120}=\frac{8y}{120}=\frac{5z}{120}\Rightarrow\frac{x}{40}=\frac{y}{15}=\frac{z}{24}\)
Đặt \(\frac{x}{40}=\frac{y}{15}=\frac{z}{24}=k\Rightarrow\hept{\begin{cases}x=40k\\y=15k\\z=24k\end{cases}}\)
Khi đó |x - 2y| = 5
<=> |40k - 2.15k| = 5
=> |10k| = 5
=> \(\orbr{\begin{cases}10k=5\\10k=-5\end{cases}}\Rightarrow\orbr{\begin{cases}k=\frac{1}{2}\\k=-\frac{1}{2}\end{cases}}\)
Nếu k = 5 => x = 20 ; y = 7,5 ; z = 12
Nếu k = -5 => x = -20 ; y =-7,5 ; z = -12
d) 4x = 5y = 6z => \(\frac{4x}{60}=\frac{5y}{60}=\frac{6z}{60}\Rightarrow\frac{x}{15}=\frac{y}{12}=\frac{z}{10}\)
Đặt \(\frac{x}{15}=\frac{y}{12}=\frac{z}{10}=k\Rightarrow\hept{\begin{cases}x=15k\\y=12k\\z=10k\end{cases}}\)
Khi đó (3x - 2y)2 = 16
<=> (3.15k - 2.12k)2 = 16
=> (45k -24k)2 = 16
=> (21k)2 = 16
=> \(\orbr{\begin{cases}21k=4\\21k=-4\end{cases}}\Rightarrow\orbr{\begin{cases}k=\frac{4}{21}\\k=-\frac{4}{21}\end{cases}}\)
Nếu k = 4/21 => x = 20/7 ; y = 16/7 ; z = 40/21
Nếu k = -4/21 => x = -20/7 ; y = -16/7 ; z = -40/21
a: \(=3x+y-z-4x+2y-6z=-x+3y-7z\)
b: \(=x^3+6x^2+5y^3-2x^3+5x-7y^3=-x^3+6x^2+5x-2y^3\)
c: \(=5.7x^2y-3.1xy+8y^3-6.9xy+2.3x^2y+8y^3\)
\(=8x^2y-10xy+16y^3\)
a)
Theo đề ta có:
\(\dfrac{3x}{5}=\dfrac{2y}{4}\) và \(6x+4y=15\)
Áp dung tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{3x}{5}=\dfrac{2y}{4}=\dfrac{6x}{10}=\dfrac{4y}{8}=\dfrac{6x+4y}{10+8}=\dfrac{15}{18}=\dfrac{5}{6}\)
\(\dfrac{3x}{5}=\dfrac{5}{6}\Rightarrow3x=\dfrac{5}{6}.5=\dfrac{25}{6}\Rightarrow x=\dfrac{25}{6}:3=\dfrac{25}{18}\)
\(\dfrac{2y}{4}=\dfrac{5}{6}\Rightarrow2y=\dfrac{5}{6}.4=\dfrac{10}{3}\Rightarrow y=\dfrac{10}{3}:2=\dfrac{5}{3}\)
Vậy \(x=\dfrac{25}{18}\) ; \(y=\dfrac{5}{3}\)
b)
Theo đề ta có:
\(\dfrac{3x}{5}=\dfrac{4y}{3}=\dfrac{5z}{7}\) và \(9x+8y+5z=10\)
Áp dung tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{3x}{5}=\dfrac{4y}{3}=\dfrac{5z}{7}=\dfrac{9x}{15}=\dfrac{8y}{6}=\dfrac{9x+8y+5z}{15+6+7}=\dfrac{10}{28}=\dfrac{5}{14}\)
\(\dfrac{3x}{5}=\dfrac{5}{14}\Rightarrow3x=\dfrac{5}{14}.5=\dfrac{25}{14}\Rightarrow x=\dfrac{25}{14}:3=\dfrac{25}{42}\)
\(\dfrac{4y}{3}=\dfrac{5}{14}\Rightarrow4y=\dfrac{5}{14}.3=\dfrac{15}{14}\Rightarrow y=\dfrac{15}{14}:4=\dfrac{15}{56}\)
\(\dfrac{5z}{7}=\dfrac{5}{14}\Rightarrow5z=\dfrac{5}{14}.7=\dfrac{5}{2}\Rightarrow z=\dfrac{5}{2}:5=\dfrac{1}{2}\)
Vậy \(x=\dfrac{25}{42}\) ; \(y=\dfrac{15}{56}\) ; \(z=\dfrac{1}{2}\)
\(a,4x=5y\:\Rightarrow\frac{x}{5}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{12}\)
\(4y=6z\Rightarrow\frac{y}{6}=\frac{z}{4}\Rightarrow\frac{y}{12}=\frac{z}{8}\)
\(\Rightarrow\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)
\(\Rightarrow\frac{x}{15}=\frac{2y}{24}=\frac{3z}{24}\)
\(\Rightarrow\frac{x-2y+3z}{15-24+24}=\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)
\(\Rightarrow\frac{5}{15}=\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)
\(\Rightarrow\frac{1}{3}=\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{1}{3}\cdot15=5\\y=\frac{1}{3}\cdot12=4\\z=\frac{1}{3}\cdot8=\frac{8}{3}\end{cases}}\)