K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 10 2018

a=1.2+2.3+3.4+...+98.99

b=12+22+32+...+982

=> a-b=(1.2+2.3+3.4+...+98.99)-(12+22+32+...+982)

=1.2+2.3+3.4+...+98.99-12-22-32-...-982

=(1.2-12)+(2.3-22)+...+(98.99-982)

=1(2-1)+2(3-2)+...+98(99-98)

=1.1+2.1+...+98.1

=1+2+3+...+98

=\(\dfrac{98.\left(98+1\right)}{2}\)

=\(\dfrac{98.99}{2}\)

=4851

Vậy a-b=4851

Đúng thì tick nha,oaoa

26 tháng 2 2016

A=98.99.100/3 = 323400

B=98.99/2       =4851

2 tháng 8 2015

\(2A=\frac{1.2+2.3+3.4+...+98.99}{1.2+2.3+3.4+...+98.99}\)

\(2A=1\)

\(A=\frac{1}{2}\)

28 tháng 4 2022

\(A=1.2^2+2.3^2+...+98.99^2\)

\(=1.2.\left(3-1\right)+2.3.\left(4-1\right)+...+98.99.\left(100-1\right)\)

\(=1.2.3-1.2+2.3.4-2.3+...+98.99.100-98.99\)

\(=\left(1.2.3+2.3.4+...+98.99.100\right)-\left(1.2+2.3+...+98.99\right)\)

\(=\dfrac{98.99.100.101}{4}+\dfrac{98.99.100}{3}\)

\(=24497550+323400\)

\(=24820950\)

15 tháng 9 2019

Bài 1:

B = 1 + (2 + 3 + 4 + ... + 98 + 99).

Ta thấy tổng trong ngoặc gồm 98 số hạng, nếu chia thành các cặp ta có 49 cặp nên tổng đó là:

(2 + 99) + (3 + 98) + ... + (51 + 50) = 49.101 = 4949

Khi đó B = 1 + 4949 = 4950

Bài 2:

3A = 1.2.3 + 2.3.3 + … + n(n + 1).3 = 1.2.(3 - 0) + 2.3.(3 - 1) + … + n(n + 1)[(n - 2) - (n - 1)] = 1.2.3 - 1.2.0 + 2.3.3 - 1.2.3 + … + n(n + 1)(n + 2) - (n - 1)n(n + 1) = n(n + 1)(n + 2) 

* Tổng quát hoá ta có:

k(k + 1)(k + 2) - (k - 1)k(k + 1) = 3k(k + 1). Trong đó k = 1; 2; 3; …

Ta dễ dàng chứng minh công thức trên như sau:

k(k + 1)(k + 2) - (k - 1)k(k + 1) = k(k + 1)[(k + 2) - (k - 1)] = 3k(k + 1)

#Châu's ngốc

15 tháng 9 2019

lm lại bài 2:

3A = 1.2.3 + 2.3.3 + … + n(n + 1).3 = 1.2.(3 - 0) + 2.3.(3 - 1) + … + n(n + 1)[(n - 2) - (n - 1)] = 1.2.3 - 1.2.0 + 2.3.3 - 1.2.3 + … + n(n + 1)(n + 2) - (n - 1)n(n + 1) = n(n + 1)(n + 2) 

=>A=\(\frac{n\times\left(n+1\right)\left(n+2\right)}{3}\)

* Tổng quát hoá ta có:

k(k + 1)(k + 2) - (k - 1)k(k + 1) = 3k(k + 1). Trong đó k = 1; 2; 3; …

Ta dễ dàng chứng minh công thức trên như sau:

k(k + 1)(k + 2) - (k - 1)k(k + 1) = k(k + 1)[(k + 2) - (k - 1)] = 3k(k + 1)