Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2A=\frac{1.2+2.3+3.4+...+98.99}{1.2+2.3+3.4+...+98.99}\)
\(2A=1\)
\(A=\frac{1}{2}\)
\(A=1.2^2+2.3^2+...+98.99^2\)
\(=1.2.\left(3-1\right)+2.3.\left(4-1\right)+...+98.99.\left(100-1\right)\)
\(=1.2.3-1.2+2.3.4-2.3+...+98.99.100-98.99\)
\(=\left(1.2.3+2.3.4+...+98.99.100\right)-\left(1.2+2.3+...+98.99\right)\)
\(=\dfrac{98.99.100.101}{4}+\dfrac{98.99.100}{3}\)
\(=24497550+323400\)
\(=24820950\)
Bài 1:
B = 1 + (2 + 3 + 4 + ... + 98 + 99).
Ta thấy tổng trong ngoặc gồm 98 số hạng, nếu chia thành các cặp ta có 49 cặp nên tổng đó là:
(2 + 99) + (3 + 98) + ... + (51 + 50) = 49.101 = 4949
Khi đó B = 1 + 4949 = 4950
Bài 2:
3A = 1.2.3 + 2.3.3 + … + n(n + 1).3 = 1.2.(3 - 0) + 2.3.(3 - 1) + … + n(n + 1)[(n - 2) - (n - 1)] = 1.2.3 - 1.2.0 + 2.3.3 - 1.2.3 + … + n(n + 1)(n + 2) - (n - 1)n(n + 1) = n(n + 1)(n + 2)
* Tổng quát hoá ta có:
k(k + 1)(k + 2) - (k - 1)k(k + 1) = 3k(k + 1). Trong đó k = 1; 2; 3; …
Ta dễ dàng chứng minh công thức trên như sau:
k(k + 1)(k + 2) - (k - 1)k(k + 1) = k(k + 1)[(k + 2) - (k - 1)] = 3k(k + 1)
#Châu's ngốc
lm lại bài 2:
3A = 1.2.3 + 2.3.3 + … + n(n + 1).3 = 1.2.(3 - 0) + 2.3.(3 - 1) + … + n(n + 1)[(n - 2) - (n - 1)] = 1.2.3 - 1.2.0 + 2.3.3 - 1.2.3 + … + n(n + 1)(n + 2) - (n - 1)n(n + 1) = n(n + 1)(n + 2)
=>A=\(\frac{n\times\left(n+1\right)\left(n+2\right)}{3}\)
* Tổng quát hoá ta có:
k(k + 1)(k + 2) - (k - 1)k(k + 1) = 3k(k + 1). Trong đó k = 1; 2; 3; …
Ta dễ dàng chứng minh công thức trên như sau:
k(k + 1)(k + 2) - (k - 1)k(k + 1) = k(k + 1)[(k + 2) - (k - 1)] = 3k(k + 1)
a=1.2+2.3+3.4+...+98.99
b=12+22+32+...+982
=> a-b=(1.2+2.3+3.4+...+98.99)-(12+22+32+...+982)
=1.2+2.3+3.4+...+98.99-12-22-32-...-982
=(1.2-12)+(2.3-22)+...+(98.99-982)
=1(2-1)+2(3-2)+...+98(99-98)
=1.1+2.1+...+98.1
=1+2+3+...+98
=\(\dfrac{98.\left(98+1\right)}{2}\)
=\(\dfrac{98.99}{2}\)
=4851
Vậy a-b=4851
Đúng thì tick nha,