Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(đkcđ\Leftrightarrow x\ge0\)
\(B=\frac{x+5}{\sqrt{x}+2}=\frac{x-4+9}{\sqrt{x}+2}=\frac{x-4}{\sqrt{x}+2}+\frac{9}{\sqrt{x}+2}.\)
\(=\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\sqrt{x}+2}+\frac{9}{\sqrt{x}+2}=\sqrt{x}-2+\frac{9}{\sqrt{x}+2}\)
\(=\sqrt{x}+2+\frac{9}{\sqrt{x}+2}-4\)
Áp dụng bđt Cô - si cho hai số dương \(\sqrt{x}+2\)và \(\frac{9}{\sqrt{x}+2}\), ta có :
\(\sqrt{x}+2+\frac{9}{\sqrt{x}+2}\ge2\sqrt{\frac{\left(\sqrt{x}+2\right).9}{\sqrt{x}+2}}\)
\(\Rightarrow\sqrt{x}+2+\frac{9}{\sqrt{x}+2}\ge2.3\)
\(\Rightarrow\sqrt{x}+2+\frac{9}{\sqrt{x}+2}-4\ge6-4\)
\(\Rightarrow\sqrt{x}+2+\frac{9}{\sqrt{x}+2}-4\ge2\)
Hay \(B_{min}=2\)\(\Leftrightarrow\sqrt{x}+2=\frac{9}{\sqrt{x}+2}\)
\(\Rightarrow\sqrt{x}+2-\frac{9}{\sqrt{x}+2}=0\)
\(\Rightarrow\frac{\left(\sqrt{x}+2\right)^2-9}{\sqrt{x}+2}=0\)
\(\Rightarrow\left(\sqrt{x}+2\right)^2-3^2=0\)
\(\Rightarrow\left(\sqrt{x}+2-3\right)\left(\sqrt{x}+2+3\right)=0\)
\(\Rightarrow\left(\sqrt{x}-1\right)\left(\sqrt{x}+5\right)=0\)
Vì \(\sqrt{x}+5>0\Rightarrow\sqrt{x}-1=0\)
\(\Rightarrow\sqrt{x}=1\Rightarrow x=1\)
\(KL:B_{min}=2\Leftrightarrow x=1\)
1) Ta có: \(\frac{x+6\sqrt{x}+9}{x-9}=\frac{\left(\sqrt{x}+3\right)^2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\frac{\sqrt{x}+3}{\sqrt{x}-3}\)
\(P=\sqrt[]{x}+\dfrac{3}{\sqrt[]{x}-1}\left(x>1\right)\)
\(P=\sqrt[]{x}-1+\dfrac{3}{\sqrt[]{x}-1}+1\)
Áp dụng bất đẳng thức Cauchy cho 2 số \(\sqrt[]{x}-1;\dfrac{3}{\sqrt[]{x}-1}\) ta được :
\(\sqrt[]{x}-1+\dfrac{3}{\sqrt[]{x}-1}\ge2\sqrt[]{\sqrt[]{x}-1.\dfrac{3}{\sqrt[]{x}-1}}\)
\(\Rightarrow\sqrt[]{x}-1+\dfrac{3}{\sqrt[]{x}-1}\ge2\sqrt[]{3}\)
\(\Rightarrow P=\sqrt[]{x}-1+\dfrac{3}{\sqrt[]{x}-1}+1\ge2\sqrt[]{3}+1\)
\(\Rightarrow Min\left(P\right)=2\sqrt[]{3}+1\)
\(B=x+\sqrt{x}=\sqrt{x}\left(\sqrt{x}+1\right).\)
Vì \(\sqrt{x}\ge0\)\(\Rightarrow B_{min}\)\(=0\Leftrightarrow\sqrt{x}\left(\sqrt{x}+1\right)=0\)
\(\Rightarrow\hept{\begin{cases}\sqrt{x}=0\\\sqrt{x}+1=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\x\in\varnothing\end{cases}}}\)
Vậy \(B_{min}=0\Leftrightarrow x=0\)
\(B=x+\sqrt{x}\)
\(B=\left(\sqrt{x}\right)^2+2\cdot\frac{1}{2}\sqrt{x}+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2\)
\(B=\left(\sqrt{x}+\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2\)
\(B=\left(\sqrt{x}+\frac{1}{2}\right)^2-\frac{1}{4}\)
Có \(\left(\sqrt{x}+\frac{1}{2}\right)^2\ge0\)
\(\Rightarrow\left(\sqrt{x}+\frac{1}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\)
\(\Rightarrow GTNN\left(\sqrt{x}+\frac{1}{2}\right)^2-\frac{1}{4}=-\frac{1}{4}\)
\(\Rightarrow GTNNx+\sqrt{x}=-\frac{1}{4}\)
với \(\left(\sqrt{x}+\frac{1}{2}\right)^2=0\)