K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 9 2021

1.

\(sin\left(x-\dfrac{\pi}{3}\right)\in\left[-1;1\right]\)

\(\Rightarrow y=2sin\left(x-\dfrac{\pi}{3}\right)+3\in\left[1;5\right]\)

\(\Rightarrow\left\{{}\begin{matrix}y_{min}=1\\y_{max}=5\end{matrix}\right.\)

15 tháng 9 2021

2.

\(cos2x\in\left[-1;1\right]\)

\(\Rightarrow y=3-\dfrac{1}{2}cos2x\in\left[\dfrac{5}{2};\dfrac{7}{2}\right]\)

\(\Rightarrow\left\{{}\begin{matrix}y_{min}=\dfrac{5}{2}\\y_{max}=\dfrac{7}{2}\end{matrix}\right.\)

NV
14 tháng 9 2021

\(y=2-2.\left(2sinx.cosx\right)=2-2sin2x\)

Do \(-1\le sin2x\le1\Rightarrow0\le y\le4\)

\(y_{min}=0\) khi \(sin2x=1\Rightarrow x=\dfrac{\pi}{4}+k\pi\)

\(y_{max}=4\) khi \(sin2x=-1\Rightarrow x=-\dfrac{\pi}{4}+k\pi\)

NV
14 tháng 9 2021

\(y=2\left(1-cos2x\right)-cos2x=2-3cos2x\)

Do \(-1\le cos2x\le1\Rightarrow-1\le y\le5\)

\(y_{min}=-1\) khi \(cos2x=1\Leftrightarrow x=k\pi\)

\(y_{max}=5\) khi \(cos2x=-1\Rightarrow x=\dfrac{\pi}{2}+k\pi\)

NV
14 tháng 9 2021

ĐKXĐ: \(cos2x\ge0\Rightarrow0\le cos2x\le1\)

\(\Rightarrow3.0+1\le y\le3.\sqrt{1}+1\)

\(\Rightarrow1\le y\le4\)

\(y_{min}=1\) khi \(cos2x=0\Rightarrow x=\dfrac{\pi}{4}+\dfrac{k\pi}{2}\)

\(y_{max}=4\) khi \(cos2x=1\Rightarrow x=k\pi\)

NV
14 tháng 9 2021

Do \(0\le cos^2x\le1\Rightarrow\dfrac{1}{2}\le y\le2\)

\(y_{min}=\dfrac{1}{2}\) khi \(cosx=0\Rightarrow x=\dfrac{\pi}{2}+k\pi\)

\(y_{max}=2\) khi \(cos^2x=1\Rightarrow sinx=0\Rightarrow x=k\pi\)

NV
15 tháng 9 2020

8.

\(y=cos^2x+2\left(2cos^2x-1\right)=5cos^2x-2\)

Do \(0\le cos^2x\le1\Rightarrow-2\le y\le3\)

\(y_{min}=-2;y_{max}=3\)

10.

\(y=2-\left(cosx+1\right)^2\le2\)

\(y_{max}=2\)

14.

Hàm tuần hoàn với chu kì \(T=\pi\)

NV
20 tháng 12 2020

\(y=7-2sinx.cosx=7-sin2x\)

Do \(-1\le sin2x\le1\Rightarrow6\le P\le8\)

\(\Rightarrow\left\{{}\begin{matrix}M=8\\m=6\end{matrix}\right.\) \(\Rightarrow P=-4\)

NV
3 tháng 10 2020

1.

\(\Leftrightarrow cosx=\frac{\sqrt{3}}{2}\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+k2\pi\\x=-\frac{\pi}{6}+n2\pi\end{matrix}\right.\)

Do \(0< x< 2\pi\Rightarrow\left\{{}\begin{matrix}0< \frac{\pi}{6}+k2\pi< 2\pi\\0< -\frac{\pi}{6}+n2\pi< 2\pi\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}-\frac{1}{12}< k< \frac{11}{12}\\\frac{1}{12}< n< \frac{13}{12}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}k=0\\n=1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}\\x=\frac{11\pi}{6}\end{matrix}\right.\) \(\Rightarrow\sum x=\frac{\pi}{6}+\frac{11\pi}{6}=2\pi\)

2.

\(-\frac{\pi}{4}\le x\le\frac{\pi}{3}\Rightarrow-\frac{\sqrt{2}}{2}\le sinx\le\frac{\sqrt{3}}{2}\)

\(\Rightarrow0\le\left|sinx\right|\le\frac{\sqrt{3}}{2}\)

\(y_{max}=\frac{\sqrt{3}}{2}\) khi \(x=\frac{\pi}{3}\)

\(y_{min}=0\) khi \(x=0\)

3 tháng 10 2020

Sao suy ra cái dấu suy ra thứ nhất đc vậy ạ

NV
1 tháng 11 2021

\(y=4\left(1-sin^2x\right)+2sinx+2=-4sin^2x+2sinx+6\)

Đặt \(sinx=t\in\left[-1;1\right]\Rightarrow y=f\left(t\right)=-4t^2+2t+6\)

\(-\dfrac{b}{2a}=\dfrac{1}{4}\in\left[-1;1\right]\)

\(f\left(-1\right)=0\) ; \(f\left(\dfrac{1}{4}\right)=\dfrac{25}{4}\)\(f\left(1\right)=4\)

\(\Rightarrow y_{max}=\dfrac{25}{4}\) khi \(sinx=\dfrac{1}{4}\)

\(y_{min}=0\) khi \(sinx=-1\)

1 tháng 11 2021

Ta có: \(y=4cos^2x+2sinx+2=4-4sin^2x+2sinx+2=-4sin^2x+2sinx+6=-\left(4sin^2x-2sinx+\dfrac{1}{16}-\dfrac{1}{16}-6\right)=-\left(2sin^2x-\dfrac{1}{4}\right)^2+\dfrac{97}{16}\)

Ta có: \(-\left(2sin^2x-\dfrac{1}{4}\right)^2\le0\Rightarrow y\le\dfrac{97}{16}\)

Vậy \(y_{max}=\dfrac{97}{16}\)