K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2018

a, A = x5 - 5x4 + 5x3 - 5x2 + 5x - 1

A= x5 - ( 4+1 ) x4 + ( 4+1 ) x3 - ( 4+1) x2 + ( 4+1 ) x -1

Thay 4 = x vào biểu thức A, ta đc :

A = x5 - ( x+1 ) x4 + ( x+1 ) x3 - ( x+1 ) x2 + ( x+1 ) x - 1

A = x- x5 - x4 + x4 + x3 - x3 - x2 + x2 + x -1

A = x -1

Thay x = 4 vào biểu thức A, ta đc :

A = 4 -1 

A = 3

b, B = x7 - 80x6 + 80x5 - 80x4 + .....+ 80x + 15

B = x7 - ( 79 +1 ) x6 + ( 79+1 )x5 - ( 79+1 ) x4 +....+( 79+1 )x + 15

Thay 79 = z vào biểu thức A, ta có :

B = x7 - ( x + 1 )x6 + ( x+1 )x5 - ( x+1 )x4 + .....+ ( x+1 )x +15

B= x7 - x7 - x6 + x6 + x5 - x5 - x4 + .....- x2 + x2 + x + 15

B= x + 15

Thay x= 79 vào biểu thức A, ta có:

A = 79 + 15

A= 94

c, C = x14 - 10x13 + 10x12 - 10x11 + ....+ 10x2 - 10x + 10

C= x14 - ( x +1 )x13 + ( x + 1 ) x12 - ( x + 1 )x11 + ..... + ( x + 1 )x2 - ( x + 1 )x - 10

C= x14 - x14 - x13 + x13 + x12 - x12 - x11 +....+ x3 - x2 + x2 - x +10

C= -x -10 

Thay -x = -9 vào biểu thức C, ta có :

C = -9 + 10

C = 1

d, D = x10 - ( x+1 )x9 + (x + 1 )x8 - ( x+1 )x7 +....+( x+1 )x2 - ( x + 1 )x + 25

D = x10 - ( x + 1 ) x9 + ( x + 1 )x8 - ( x + 1 )x7 + ..... + x3 - x2 + x2 - x + 25

D = -x + 25

thay -x = -24, vào biểu thức A , ta đc ;

A = -24 + 25

A = 1

5 tháng 9 2018

\(A=x^5-5x^4+5x^3-5x^2+5x-1\)

\(=x^5-\left(x+1\right)x^4+\left(x+1\right)x^3-\left(x+1\right)x^2+\left(x+1\right)x-x+3\)

\(=x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^2+x-x+3\)

\(=3\)

20 tháng 8 2019

Tham khảo:

https://hoc24.vn/hoi-dap/question/278669.html

20 tháng 8 2019

Câu 1 nha bn.

1 tháng 8 2020

a) (-xy)10 : (-xy)5 = (-xy)2 

b) (5x2y4) : 10x2y = y3/2

c) (15x4y3z2) : (5x2y2z2) = 3x2y

d) \(\frac{3}{4}x^3y^3:\left(-\frac{1}{2}x^2y^2\right)=\frac{\frac{3}{4}x^3y^2}{-\frac{1}{2}x^2y^2}=-\frac{3}{2}x\)

e) 6x3y5 : 12x3y2 = y3/2

f) (25x5 - 5x4 + 10x2) : (5x2

= 5x3 - x2 + 2

g) \(\frac{2}{3}xy\cdot\left(2x^2y-3xy+y^2\right)=\frac{4}{3}x^3y^2-2x^2y^2+\frac{2}{3}xy^3\)

h) \(\frac{3}{4}x^3y^5z:\left(5x^2y^2z\right)=\frac{\frac{3}{4}x^3y^5z}{5x^2y^2z}=\frac{3}{20}xy^3\)

1 tháng 8 2020

Cảm ơn a CTV ạ!

NV
13 tháng 1 2019

Ta có: \(P\left(x\right)=x^4+10x^3+25x^2=x^2\left(x^2+10x+25\right)=x^2\left(x+5\right)^2=\left(x^2+5x\right)^2\)

\(P\left(x\right)-2Q\left(x\right)=0\Leftrightarrow\left(x^2+5x\right)^2-2\left(x^2+5x+12\right)=0\)

Đặt \(x^2+5x=a\) phương trình trên trở thành:

\(a^2-2\left(a+12\right)=0\Leftrightarrow a^2-2a-24=0\Rightarrow\left[{}\begin{matrix}a=6\\a=-4\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x^2+5x=6\\x^2+5x=-4\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2+5x-6=0\\x^2+5x+4=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=1\\x=-6\\x=-1\\x=-4\end{matrix}\right.\)

Bài 1: Làm tính nhâna) 3x(5x2 - 2x - 1); b) (x2 - 2xy + 3)(-xy);c) x2y(2x3 - xy2 - 1); d) x(1,4x - 3,5y);e) xy(x2 - xy + y2); f)(1 + 2x - x2)5x;g) (x2y - xy + xy2 + y3). 3xy2; h) x2y(15x - 0,9y + 6);Bài 2: Rút gọn rồi tính giá trị của biểu thứca) 3(2a - 1) + 5(3 - a) với a = .b) 25x - 4(3x - 1) + 7(5 - 2x) với x = 2,1.c) 4a - 2(10a - 1) + 8a - 2 với a = -0,2Bài 3. Chứng minh rằng biểu thức sau không phụ thuộc vào giá trị của biếna) x(2x + 1) - x2(x...
Đọc tiếp

Bài 1: Làm tính nhân

a) 3x(5x2 - 2x - 1); b) (x2 - 2xy + 3)(-xy);

c) x2y(2x3 - xy2 - 1); d) x(1,4x - 3,5y);

e) xy(x2 - xy + y2); f)(1 + 2x - x2)5x;

g) (x2y - xy + xy2 + y3). 3xy2; h) x2y(15x - 0,9y + 6);

Bài 2: Rút gọn rồi tính giá trị của biểu thức

a) 3(2a - 1) + 5(3 - a) với a = .

b) 25x - 4(3x - 1) + 7(5 - 2x) với x = 2,1.

c) 4a - 2(10a - 1) + 8a - 2 với a = -0,2

Bài 3. Chứng minh rằng biểu thức sau không phụ thuộc vào giá trị của biến

a) x(2x + 1) - x2(x + 2) + (x3 - x + 3);

b) x(3x2 - x + 5) - (2x3 +3x - 16) - x(x2 - x + 2);

Bài 4. Tìm x biết:

a) a) 5x(12x + 7) – 3x(20x – 5) = - 100

b) 0,6x(x – 0,5) – 0,3x(2x + 1,3) = 0,138

c) 6x(5x + 3) + 3x(1 – 10x) = 7

Bài 5: Chứng minh các đẳng thức sau:

a) a(b – c) – b(a + c) + c(a – b) = - 2bc

b) a(1 – b)+ a(a2 – 1) = a(a2 – b)

Bài 6*: Tính giá trị của biểu thức

a) P(x) = x7 - 80x6 + 80x5 - 80x4 +….+ 80x + 15 với x = 79.

b) M(x) = x3 - 30x2 - 31x + 1 với x = 31.

0
13 tháng 1 2019

P - 2Q = x^4 + 10x^3 + 23x^2 - 10x - 24

            = x^4 - x^3 + 11x^3 - 11x^2 + 34x^2 - 34x + 24x - 24

            = (x - 1)(x^3 + 11x^2 + 34x +24)

            = (x-1)(x^3+x^2+10x^2+10x+24x+24)

            = (x-1)(x+1)(x^2 + 10x + 24)

            => P - 2Q có x = 1 và x= -1 là nghiệm của pt

P - 2Q = x^4 + 10x^3 + 23x^2 - 10x - 24

            = x^4 - x^3 + 11x^3 - 11x^2 + 34x^2 - 34x + 24x - 24

            = (x - 1)(x^3 + 11x^2 + 34x +24)

            = (x-1)(x^3+x^2+10x^2+10x+24x+24)

            = (x-1)(x+1)(x^2 + 10x + 24)

            => P - 2Q có x = 1 và x= -1 là nghiệm của pt

30 tháng 8 2015

Giải đc cách nào vậy 

15 tháng 10 2016

thật ra bài này có 3 cách 2 cách gần giống nhau (cô giáo mk cho làm 3 cách)

3 tháng 9 2018

chỉnh đề B

\(B=x^5-15x^4+16x^3-29x^2+13x\)

\(=x^5-\left(x+1\right)x^4+\left(x+2\right)x^3+\left(2x+1\right)x^2+\left(x-1\right)x\)

\(=x^5-x^5-x^4+x^4+2x^3-2x^3-x^2+x^2-x\)

\(=-x=-14\)

26 tháng 3 2019

\(2x-10=0\Leftrightarrow2\left(x-5\right)=0\Leftrightarrow x-5=0\Leftrightarrow x=5\)

\(10-5x=0\Leftrightarrow5x=10\Leftrightarrow x=2\)

\(x^2-36=0\Leftrightarrow\left(x-6\right)\left(x+6\right)=0\Leftrightarrow\left[{}\begin{matrix}x-6=0\\x+6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-6\end{matrix}\right.\)

\(25x^2-4=0\Leftrightarrow\left(5x-2\right)\left(5x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}5x-2=0\\5x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{2}{5}\\x=-\frac{2}{5}\end{matrix}\right.\)

\(4x^2-x=0\Leftrightarrow x\left(4x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\4x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\frac{1}{4}\end{matrix}\right.\)

\(4x^2-16=0\Leftrightarrow\left(2x-4\right)\left(2x+4\right)=0\Leftrightarrow\left[{}\begin{matrix}2x-4=0\\2x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)

\(4x^3-x=0\Leftrightarrow x\left(4x^2-1\right)=0\Leftrightarrow x\left(2x-1\right)\left(2x+1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\2x-1=0\\2x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\frac{1}{2}\\x=-\frac{1}{2}\end{matrix}\right.\)

\(9x-4x^3=0\Leftrightarrow x\left(9-4x^2\right)=0\Leftrightarrow x\left(3-2x\right)\left(3+2x\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\3-2x=0\\3+2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\frac{3}{2}\\x=-\frac{3}{2}\end{matrix}\right.\)

11 tháng 4 2019

a. Rút gọn đa thức và sắp xếp theo thứ tự giảm dần của biến..

\(A\left(x\right)=13x^4+3x^2+15x+7x^2-10x^4-7x-6-8x+15\)

\(=\left(13x^4-10x^4\right)+\left(3x^2+7x^2\right)+\left(15x-7x-8x\right)+\left(15-6\right)\)

\(=3x^4+10x^2+9.\)

\(B\left(x\right)=5x^4+10-5x^2-18+3x-10x^2-3x-4x^4\)

\(=\left(5x^4-4x^4\right)+\left(-5x^2-3x^2\right)+\left(3x-3x\right)+\left(10-18\right)\)

\(=x^4-8x^2-8\)

b. Tính M = A(x) + B(x) ; N = A(x) - B(x)

\(M=A\left(x\right)+B\left(x\right)=\left(3x^4+10x^2+9\right)+\left(x^4-8x^2-8\right)\)

\(=\left(3x^4+x^4\right)+\left(10x^2-8x^2\right)+\left(10-8\right)\)

\(=4x^4+2x^2+2\)

\(N=A\left(x\right)-B\left(x\right)=\left(3x^4+10x^2+9\right)-\left(x^4-8x^2-8\right)\)

\(=3x^4+10x^2+9-x^4+8x^2+8\)

\(=\left(3x^4-x^4\right)+\left(10x^2+8x^2\right)+\left(9+8\right)\)

\(=2x^4+18x^2+17\)