Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(\left(1-\dfrac{1}{5}\right)x\left(1-\dfrac{2}{5}\right)x...x\left(1-\dfrac{9}{5}\right)\\ =\left(1-\dfrac{1}{5}\right)x...x\left(1-\dfrac{5}{5}\right)x...x\left(1-\dfrac{9}{5}\right)\\ =\left(1-\dfrac{1}{5}\right)x...x0x...x\left(1-\dfrac{9}{5}\right)=0\)
x là nhân nhé :))
b)
\(\dfrac{1}{2}x\dfrac{2}{3}x...x\dfrac{9}{10}\\ =\dfrac{1x2x...x9}{2x3x...x10}=\dfrac{2x3x...x9}{2x3x...x9x10}=\dfrac{1}{10}\)
b1. 456 = 10.(40+5)+6
A = 10( 44.....440 + 55....55) + 66..66 (... 111 số)
=499.....9950 + 66...66 (... 111 số 9 và 111 số 6)
= 55....5516 (....111 số 5)
b2. A - B = 1+2 + 3 + 4 +....+98 = 49 x100 + 51 = 4951
B= 1/2 x 2/3 x 3/4 x ...........x 2002/2003 x 2003/2004
1 x 2 x 3 x 4 x .............x 2002 x 2003
2 x 3 x 4 x .............x 2003 x 2004
1
2004
Ta có : 1/[n x (n - 1)] = [(n - 1) - n] / [n x (n - 1)] = 1/n - 1/(n - 1)
Áp dụng : 1/(1x2) + 1/(2x3) + 1/(3x4) + ... + 1/(48x49) + 1/(49x50)
= 1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/48 - 1/49 + 1/49 - 1/50
= 1 - 1/50 < 1
Vậy : 1/(1x2) + 1/(2x3) + 1/(3x4) + ... + 1/(48x49) + 1/(49x50) < 1
Ta có : 1/(n x n) < 1/[(n - 1) x n]
1/(2x2) < 1/(1x2)
1/(3x3) < 1/(2x3)
1/(4x4) < 1/(3x4)
.............
1/(49x49) < 1/(49x49)
1/(50x50) < 1/(49x50)
=> 1/(2x2) + 1/(3x3) + 1/(4x4) + ... 1/(49x49) + 1/(50x50) < 1/(1x2) + 1/(2x3) + 1/(3x4) + ... + 1/(48x49) + 1/(49x50) < 1
Vậy 1/(2x2) + 1/(3x3) + 1/(4x4) + ... 1/(49x49) + 1/(50x50) < 1
Đặt B=1/1*2+1/2*3+...+1/99*100
Ta thấy:
A=1/2*2+1/3*3+...+1/100*100<B=1/1*2+1/2*3+...+1/99*100 (1)
Ta lại có:
B=1/1*2+1/2*3+...+1/99*100
=1-1/2+1/2-1/3+...+1/99-1/100
=1-1/100<1 (2)
Từ (1) và (2) ta có: A<B<1 <=>A<1
a) \(A=\left(1-\dfrac{1}{2}\right).\left(1-\dfrac{1}{3}\right).\left(1-\dfrac{1}{4}\right).\left(1-\dfrac{1}{5}\right)...\left(1-\dfrac{1}{2003}\right).\left(1-\dfrac{1}{2004}\right)\)
\(=\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}.\dfrac{4}{5}...\dfrac{2002}{2003}.\dfrac{2003}{2004}\)
\(=\dfrac{1}{2004}\)
b) \(B=5\dfrac{9}{10}:\dfrac{3}{2}-\left(2\dfrac{1}{3}.4\dfrac{1}{2}-2.2\dfrac{1}{3}\right):\dfrac{7}{4}\)
\(=\dfrac{59}{10}:\dfrac{3}{2}-\left(\dfrac{7}{3}.\dfrac{9}{2}-2.\dfrac{7}{3}\right).\dfrac{4}{7}\)
\(=\dfrac{59}{15}-\left(\dfrac{21}{2}-\dfrac{14}{3}\right).\dfrac{4}{7}\)
\(=\dfrac{59}{15}-\dfrac{35}{6}.\dfrac{4}{7}\)
\(=\dfrac{59}{15}-\dfrac{10}{3}\)
\(=\dfrac{3}{5}\)
\(A=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{2021.2021}\)
\(=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2021^2}\)
Xét : \(\frac{1}{k^2}\left(k\inℕ^∗\right)\)
\(=\frac{4}{4k^2}< \frac{4}{4k^2-1}=\frac{4}{\left(2k-1\right)\left(2k+1\right)}==2\left(\frac{1}{2k-1}-\frac{1}{2k+1}\right)\)
Áp dụng cho biểu thức A,ta có :
\(A< 2\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{4041}-\frac{1}{4023}\right)\)
\(=2\left(\frac{1}{3}-\frac{1}{4023}\right)=\frac{2}{3}-\frac{2}{4023}< \frac{2}{3}< \frac{3}{4}\)
A= \(\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{100.100}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}=1-\frac{1}{100}=\frac{99}{100}\)
=> A= \(\frac{99}{100}>\frac{25}{26}\)
\(A=\dfrac{1}{2.2}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+...+\dfrac{1}{2009.2009}\)
\(\dfrac{1}{2.2}< \dfrac{1}{1.2}=1-\dfrac{1}{2}\)
\(\dfrac{1}{3.3}< \dfrac{1}{2.3}=\dfrac{1}{2}-\dfrac{1}{3}\)
\(\dfrac{1}{4.4}< \dfrac{1}{3.4}=\dfrac{1}{3}-\dfrac{1}{4}\)
...
\(\dfrac{1}{2009.2009}< \dfrac{1}{2008.2009}=\dfrac{1}{2008}-\dfrac{1}{2009}\)
\(\Rightarrow A=\dfrac{1}{2.2}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+...+\dfrac{1}{2009.2009}< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...\dfrac{1}{2008}-\dfrac{1}{2009}=1-\dfrac{1}{2009}< 1\)
\(\Rightarrow A=\dfrac{1}{2.2}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+...+\dfrac{1}{2009.2009}< 1\)
Ta có:
\(\dfrac{1}{2\times2}+\dfrac{1}{3\times3}+\dfrac{1}{4\times4}+...+\dfrac{1}{2009\times2009}< \dfrac{1}{1\times2}+\dfrac{1}{2\times3}+\dfrac{1}{3\times4}+...+\dfrac{1}{2008\times2009}\\ =1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2008}-\dfrac{1}{2009}=1-\dfrac{1}{2009}< 1\)
Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mn hiểu đề của bạn hơn.