Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì 1003 < 999, nên phần tử trong dấu chia sẽ nhỏ hơn 1
Vậy giá trị nhỏ nhất của biểu thức A làA = 2023 - 1003:999 = 2023 - 1 = 2022.
B = 2003 - \(\dfrac{1003}{999-x}\) đk \(x\) # 999
B = 2003 + \(\dfrac{1003}{x-999}\)
Nếu \(x\) > 999 ⇒ \(x-999>0\) ⇒ \(\dfrac{1003}{x-999}\) > 0
⇒ 2003 + \(\dfrac{1003}{x-999}\) > 2003 (1)
Nếu \(x\) < 999 ⇒ \(x-999\) < 0 ⇒ \(\dfrac{1003}{x-999}\) < 0
2003 + \(\dfrac{1003}{x-999}\) < 2003
Vì \(x\) là số tự nhiên nên 2003 + \(\dfrac{1003}{x-999}\) đạt giá trị nhỏ nhất ⇔
\(\dfrac{1003}{x-999}\) đạt giá trị nhỏ nhất ⇔ \(x-999\) đạt giá trị lớn nhất
\(x-999\) đạt giá trị lớn nhất \(\Leftrightarrow\) \(x\) lớn nhất.
vì \(x\) là số tự nhiên và \(x\) < 999 nên \(x\) lớn nhất khi \(x\) = 998
⇒ Vậy Bmin = 2003 + \(\dfrac{1003}{998-999}\) = 2003 - 1003 = 1000 (2)
Kết hợp (1) và(2) ta có:
Giá trị nhỏ nhất của B là 1000 xả ra khi \(x\) = 998
1) Thay x = 38 vào p ta có P = \(\frac{38+64}{38-36}=\frac{102}{2}=51\)
b) Khi P = 101 => \(\frac{x+64}{x-36}=101\)
=> x + 64 = 101(x -36)
=> x + 64 = 101x - 3636
=> 101x - x = 3636 + 64
=> 100x = 3700
=> x = 37
c) Ta có P = \(\frac{x+64}{x-36}=\frac{x-36+100}{x-36}=1+\frac{100}{x-36}\)
Vì 1 là số tự nhiên => \(\frac{100}{x-36}\inℕ^∗\Leftrightarrow100⋮x-36\Rightarrow x-36\inƯ\left(100\right)\)
=> X - 36 \(\in\left\{1;2;4;5;10;20;25;50;100\right\}\)
=> \(x\in\left\{37;38;40;41;46;56;61;86;136\right\}\)
2) a) Thay x = 26 vào B ta có B = \(64:\left(26-16\right)=64:10=6,4\)
b) Khi B = 80
=> 64(x - 16) = 80
=> x - 16 = 1,25
=> x = 17,25
c) Để B đạt GTLN
=> x - 16 đạt GTNN
mà x - 6 khác 0
=> x - 16 = 1
=> x = 17
Khi đó B = 64 : (17 - 16) = 64
Vậy GTLN của B là 64 khi x = 1
1) Thay x = 38 vào p ta có P = 38+6438−36=1022=5138−3638+64=2102=51
b) Khi P = 101 => �+64�−36=101x−36x+64=101
=> x + 64 = 101(x -36)
=> x + 64 = 101x - 3636
=> 101x - x = 3636 + 64
=> 100x = 3700
=> x = 37
c) Ta có P = �+64�−36=�−36+100�−36=1+100�−36x−36x+64=x−36x−36+100=1+x−36100
Vì 1 là số tự nhiên => 100�−36∈N∗⇔100⋮�−36⇒�−36∈Ư(100)x−36100∈N∗⇔100⋮x−36⇒x−36∈Ư(100)
=> X - 36 ∈{1;2;4;5;10;20;25;50;100}∈{1;2;4;5;10;20;25;50;100}
=> �∈{37;38;40;41;46;56;61;86;136}x∈{37;38;40;41;46;56;61;86;136}
2) a) Thay x = 26 vào B ta có B = 64:(26−16)=64:10=6,464:(26−16)=64:10=6,4
b) Khi B = 80
=> 64(x - 16) = 80
=> x - 16 = 1,25
=> x = 17,25
c) Để B đạt GTLN
=> x - 16 đạt GTNN
mà x - 6 khác 0
=> x - 16 = 1
=> x = 17
Khi đó B = 64 : (17 - 16) = 64
Vậy GTLN của B là 64 khi x = 1
a, A = 2023 - \(\dfrac{2020}{x}\) ( \(x\in\) N)
Đk: \(x\) # 0
⇒ \(x\in\) N*
vì \(x\in\) N* nên \(\dfrac{2020}{x}>0\) vậy Amax ⇔\(\dfrac{2020}{x}\) đạt giá trị nhỏ nhất.
\(\dfrac{2020}{x}\) đạt giá trị nhỏ nhất ⇔ \(x\)max mà \(x\) là số tự nhiên nên không có số tự nhiên lớn nhất
Vậy không có giá trị lớn nhất của A
b, B = 2023 - 1003: (1004 - \(x\)) Với \(x\) là số tự nhiên; đk \(x\) # 1004
B = 2023 + \(\dfrac{1003}{x-1004}\)
Nếu \(x\) < 1004 ⇒ \(x\) - 1004 < 0 ⇒ \(\dfrac{1003}{x-1004}\) < 0
⇒ \(\dfrac{1003}{x-1004}\) + 2023 < 2023 (1)
Nếu \(x\) > 1004 ⇒ \(x-1004\) > 0
Vậy B max ⇔ \(\dfrac{1003}{x-1004}\) đạt giá trị lớn nhất
\(\dfrac{1003}{x-1004}\) đạt giá trị lớn nhất ⇔ \(x-1004\) đạt giá trị nhỏ nhất.
Vì \(x\) > 1004 và \(x\) là số tự nhiên nên \(x\) nhỏ nhất khi \(x\) = 1005
⇒ Bmax = 2023 + \(\dfrac{1003}{1005-1004}\) = 3026 xảy ra khi \(x\) = 1005 (2)
Kết luận:
Kết hợp (1) và (2) ta có Giá trị lớn nhất của biểu thức B là 3026 xảy ra khi \(x=1005\)