K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2017

Bạn tham khảo lời giải chi tiết ở đường link dưới nhé

Câu hỏi của nguyễn thế an - Toán lớp 8 - Học toán với OnlineMath

12 tháng 3 2021

Ta có:

\(2a+2b+2c=by+cz+ax+cz+ax+by\)

\(\Leftrightarrow a+b+c=ax+by+cz\)

\(\Rightarrow a+b+c=ax+2a;a+b+c=by+2b;a+b+c=cz+2c\)

\(\Leftrightarrow\frac{1}{x+2}=\frac{a}{a+b+c};\frac{1}{y+2}=\frac{b}{a+b+c};\frac{1}{z+2}=\frac{c}{a+b+c}\)

\(\Rightarrow A=\frac{1}{x+2}+\frac{1}{y+2}+\frac{1}{z+2}=\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=1\)

12 tháng 3 2021

Ta có:\(\hept{\begin{cases}2a=by+cz\\2b=ax+cz\\2c=ax+by\end{cases}}\)

\(\Leftrightarrow2a+2b+2c=by+cz+ax+cz+ax+by\)

\(\Leftrightarrow2a+2b+2c=2ax+2by+2cz\)

\(\Leftrightarrow2a+2b+2c-2ax-2by-2cz=0\)

\(\Leftrightarrow\left(2a-2ax\right)+\left(2b-2by\right)+\left(2c-2cz\right)=0\)

\(\Leftrightarrow2a\left(1-x\right)+2b\left(1-y\right)+2c\left(1-z\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}1-x=0\\1-y=0\\1-z=0\end{cases}\Leftrightarrow x=y=z=1}\)

\(\Rightarrow A=\frac{1}{x+2}+\frac{1}{y+2}+\frac{1}{z+2}=\frac{1}{1+2}+\frac{1}{1+2}+\frac{1}{1+2}=1\)

NV
20 tháng 2 2019

\(2a+2b+2c=2ax+2by+2cz\Rightarrow a+b+c=ax+by+cz\)

\(\Rightarrow a+b+c=ax+2a\Rightarrow a+b+c=a\left(x+2\right)\)

Tương tự ta có \(\left\{{}\begin{matrix}a+b+c=b\left(y+2\right)\\a+b+c=c\left(z+2\right)\end{matrix}\right.\)

Để M xác định thì \(x+2;y+2;z+2\ne0\)

Do đó nếu \(a+b+c=0\Rightarrow\left\{{}\begin{matrix}x=0\\y=0\\z=0\end{matrix}\right.\) \(\Rightarrow\) đúng với mọi x, y, z

\(\Rightarrow\) giá trị M không xác định

Nếu \(a+b+c\ne0\Rightarrow\left\{{}\begin{matrix}x+2=\dfrac{a+b+c}{a}\\y+2=\dfrac{a+b+c}{b}\\z+2=\dfrac{a+b+c}{c}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{x+2}=\dfrac{a}{a+b+c}\\\dfrac{1}{y+2}=\dfrac{b}{a+b+c}\\\dfrac{1}{z+2}=\dfrac{c}{a+b+c}\end{matrix}\right.\)

\(\Rightarrow M=\dfrac{a}{a+b+c}+\dfrac{b}{a+b+c}+\dfrac{c}{a+b+c}=\dfrac{a+b+c}{a+b+c}=1\)

NV
20 tháng 2 2019

Dòng 5 gõ nhầm \(a+b+c=0\Rightarrow\left\{{}\begin{matrix}a=0\\b=0\\c=0\end{matrix}\right.\) mới đúng

2 tháng 12 2016

cộng 3 cái lại nhe bạn =))

2 tháng 12 2016

Có nhiều cách làm bài này.

Có \(2a+2b+2c=by+cz+a.x+cz+a.x+by\)

\(2\left(a+b+c\right)=2\left(a.x+by+cz\right)\)

\(\Rightarrow a+b+c=a.x+by+cz\)

  • \(a+b+c=a.x+\left(by+cz\right)=a.x+2.a=a\left(x+2\right)\)

\(\Rightarrow\frac{1}{x+2}=\frac{a}{a+b+c}\)

  • \(a+b+c=\left(a.x+by\right)+cz=2c+cz=c\left(z+2\right)\)

\(\Rightarrow\frac{1}{z+2}=\frac{c}{a+b+c}\)

  • \(a+b+c=by+\left(a.x+cz\right)=by+2b=b\left(y+2\right)\)

\(\Rightarrow\frac{1}{y+2}=\frac{b}{a+b+c}\)

\(\Rightarrow M=\frac{1}{x+2}+\frac{1}{y+2}+\frac{1}{z+2}=\frac{a+b+c}{a+b+c}=1\)

Vậy ...

12 tháng 12 2016

Với a, b, c khác -1 thì x + y + z khác 0.
Từ đề bài ta có: y + z = ax + cz + ax + by
<=> 2ax = y + z - x
--> a = (y + z - x)/(2x) --> a + 1 = (x + y + z)/(2x)
--> 1/(1 + a) = 2x/(x + y + z)
tương tự: 1/(1 + b) = 2y/(x + y + z)
1/(1 + c) = 2z/(x + y + z)
--> 1/(1 + a) + 1/(1 + b) + 1/(1 + c) = (2x + 2y + 2z)/(x + y + z) = 2

vậy giá trị của biểu thức A= 2