\(x^{2013}-2014.x^{2012}+2014.x^{2011}-2010+2014.x-2014\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 5 2017

Ta có :

x = 2013 => x + 1 = 2014

x2013 - 2014.x2012 + 2014.x2011 - 2010 + 2014x - 2014

= x2013 - (x + 1).x2012 + (x + 1).x2011 - 2010 + (x + 1)x - 2014

= x2013 - x2013 - x2012 + x2012 + x2011 - 2010 + x2 + x - 2014

= x2011 + x2 - x - 4024

Làm thì thấy nó có vấn đề ?????

23 tháng 5 2017

ta có : x = 2013

=> x + 1 = 2014

Thay 2014 = x + 1 vào biểu thức , sau đó phân phối , là ra

3 tháng 5 2020

A= 0 bạn nhé!

3 tháng 5 2020

Giải chi tiết hộ mình với ạ

Mình cảm mơm

4 tháng 4 2016

Bạn xem lại đề câu a) cho rõ lại

Câu b) Tại x=2013 thì B=x2013-(x+1)x2012+(x+1)x2011-(x+1)x2010+...-(x+1)x2+(x+1)x-1

                                 = x2013-x2013-x2012+x2012+x2011-x2011-x2010+..-x3 - x2+x2+x-1

                                 = x-1 =  2012

27 tháng 3 2017

phải là so sánh A với 2 mới đúng

2 tháng 12 2018

Ai giúp mình với !

2 tháng 12 2018

đề có sai ko bn, sao tự nhiên lại có y lạc giữa bầy x

23 tháng 2 2017

=> \(f\left(x\right)=x^{2014}-\left(2014+1\right)x^{2013}+\left(2014+1\right)x^{2012}+...-\left(2014+1\right)x+2014+1\)

Mà x = 2014

=> \(f\left(2014\right)=x^{2014}-\left(x+1\right)x^{2013}+\left(x+1\right)^{2012}+...-\left(x+1\right)x+x+1\)

\(=x^{2014}-x^{2014}+x^{2013}-x^{2013}-x^{2012}+....-x^2-x+x+1\)

\(=1\)

=> f(2014) = 1

23 tháng 2 2017

thank nha

29 tháng 2 2016

f(2014)=2013 k cho mình đi

1 tháng 3 2016

bạn có chắc không

a) Ta có:

\(\frac{x+11}{12}+\frac{x+11}{13}+\frac{x+11}{14}=\frac{x+11}{15}+\frac{x+11}{16}\)

\(\Rightarrow\left(x+11\right)\left(\frac{1}{12}+\frac{1}{13}+\frac{1}{14}\right)=\left(x+11\right)\left(\frac{1}{15}+\frac{1}{16}\right)\)

Mà ta có:

\(\frac{1}{12}+\frac{1}{13}+\frac{1}{14}\ne\frac{1}{15}+\frac{1}{16}\)

\(\Rightarrow x+11=0\Rightarrow x=-11\)

Ta có:

\(A=1+x+x^2+x^3+...+x^{100}\)

Đặt \(B=x+x^2+x^3+...+x^{100}\)

\(\Rightarrow B=\left(-11\right)+\left(-11\right)^2+\left(-11\right)^3+...+\left(-11\right)^{100}\)

\(\Rightarrow-11B=\left(-11\right)^2+\left(-11\right)^3+\left(-11\right)^4+...+\left(-11\right)^{101}\)

\(\Rightarrow-11B-B=\left(-11\right)^{101}-\left(-11\right)\)

\(\Rightarrow-12B=\left(-11\right)^{101}+11\Rightarrow B=\frac{\left(-11\right)^{101}+11}{-12}\)

\(\Rightarrow A=1+B=\frac{\left(-11\right)^{101}+11}{-12}+1\)

16 tháng 7 2017

\(\Leftrightarrow\frac{x+1}{2009}+\frac{x+1}{2010}+\frac{x+1}{2011}-\frac{x+1}{2012}-\frac{x+1}{2013}-\frac{x+1}{2014}=0\)

\(\Leftrightarrow\left(x+1\right)\left(\frac{1}{2009}+\frac{1}{2010}+\frac{1}{2011}-\frac{1}{2012}-\frac{1}{2013}-\frac{1}{2014}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\\frac{1}{2009}+\frac{1}{2010}+\frac{1}{2011}-\frac{1}{2012}-\frac{1}{2013}-\frac{1}{2014}=0\end{cases}}\)

mà \(\frac{1}{2009}+\frac{1}{2010}+\frac{1}{2011}-\frac{1}{2012}-\frac{1}{2013}-\frac{1}{2014}\ne0\)

nên \(x+1=0\)

\(\Leftrightarrow x=-1\)