Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt x = a - 1 6 ; y = b - 1 6 . Khi đó
K = x + y x 2 - x y + y 2 x 3 - y 3 = x 3 + y 3 x 3 - y 3 = x 6 - y 6 = a - 1 - b = 1 - a b a
Đáp án D
Thay K(0) = 4 vào đa thức K(x) ta có : a.0^2 + b.0 + c => c = 4 (1)
Thay K(1) = 3 và (1) vào đa thức K(x) ta có : a.1^2 + b.1 + 4 = a + b + 4 = 3 => a+b=-1 => a= -1 - b (2)
Thay K(-1) = 7 , (1) vào đa thức K(x) ta có : a.(-1)^2 + b.(-1) + 4 = a-b+4=7 => a-b=3 (3)
Thay (2) vào (3) ta có : -1 - b - b = -1 - 2b = 3 => 2b= -4 => b = -2
Thay b = -2 vào (3) ta có : a - (-2) = 3 => a = 1.
Vậy a + b + c = 1 + (-2) + 4 = 3
Ta có P = log a 2 b + 16 log b a
Đặt t = log a b
Xét hàm số
f t = t 2 + 16 t f ' t = 2 t - 16 t 2 = 0 ⇔ t = 2
Với t = 2 ta có log a b = 2 ⇒ a 2 = b . Thay b = a 2 vào k ta được k = log a a b 3 = log a a . a 2 3 = 1
Đáp án A
Đáp án B
Đồ thị hàm số đi qua điểm A(0;−1) do đó − 1 = 0 + b 0 − 1 ⇒ b = 1
Tiếp tuyến của đồ thị tại A(0;−1) có hệ số góc bằng -3, do đó y ' 0 = − 3
⇔ y ' 0 = − a − 1 0 − 1 2 = − 3 ⇔ a = 2
Vậy a+b=3.
Đáp án D
Phương pháp:
+ Tìm tâm và bán kính của mặt cầu
+ Xác định vị trí tương đối của mặt phẳng và mặt cầu để suy ra vị trí của điểm M
+ Tìm tọa độ của đường thẳng và mặt cầu thì ta giải hệ phương trình gồm phương trình đường thẳng và phương trình mặt cầu
Cách giải:
Mặt cầu (S) có tâm
nên mặt phẳng (P) không cắt mặt cầu (S).Khi đó điểm M thuộc mặt cầu (S) sao cho khoảng cách từ M đến mặt phẳng (P) là nhỏ nhất thì M là giao điểm của đường thẳng d đi qua I , nhận n P → = 2 ; - 1 ; 2 làm VTCP với mặt cầu.
Phương trình đường thẳng
Tọa độ giao điểm của đường thẳng d và mặt cầu (S) thỏa mãn hệ phương trình
Đáp án là C