K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2017

\(D=\dfrac{10}{56}+\dfrac{10}{140}+\dfrac{10}{260}+...+\dfrac{10}{1400}\)

\(=\dfrac{5}{28}+\dfrac{5}{70}+\dfrac{5}{130}+....+\dfrac{5}{700}\)

\(=5\left(\dfrac{1}{28}+\dfrac{1}{70}+\dfrac{1}{130}+...+\dfrac{1}{700}\right)\)

\(=5\left(\dfrac{1}{4.7}+\dfrac{1}{7.10}+\dfrac{1}{10.13}+...+\dfrac{1}{25.28}\right)\)

\(=5.\dfrac{1}{3}\left(\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{13}+...+\dfrac{1}{25}-\dfrac{1}{28}\right)\)

\(=\dfrac{5}{3}\left(\dfrac{1}{4}-\dfrac{1}{28}\right)\)

\(=\dfrac{5}{3}.\dfrac{3}{14}\)

\(=\dfrac{5}{14}\)

Ta có: \(\dfrac{x-y}{z-y}=-10\)

nên \(z-y=\dfrac{x-y}{-10}\)

hay \(y-z=\dfrac{x-y}{10}=\dfrac{1}{10}\left(x-y\right)\)

Ta có: \(\dfrac{x-y}{z-y}=-10\)

\(\Leftrightarrow\dfrac{x-y}{-10}=\dfrac{z-y}{1}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x-y}{-10}=\dfrac{z-y}{1}=\dfrac{x-y-z+y}{-10-1}=\dfrac{x-z}{-11}\)

Do đó: \(\dfrac{x-y}{-10}=\dfrac{x-z}{-11}\)

\(\Leftrightarrow x-z=\dfrac{11\left(x-y\right)}{10}=\dfrac{11}{10}\left(x-y\right)\)

\(\Leftrightarrow\dfrac{x-z}{y-z}=\dfrac{11}{10}\left(x-y\right):\dfrac{1}{10}\left(x-y\right)=\dfrac{11}{10}\cdot\dfrac{10}{1}=11\)

NV
10 tháng 12 2021

\(\dfrac{3-2x}{5}>\dfrac{x-4}{10}\)

\(\Leftrightarrow6-4x>x-4\)

\(\Leftrightarrow5x< 10\)

\(\Leftrightarrow x< 2\)

6 tháng 5 2023

`a)` Thay `x=2` vào `B` có: `B=[-10]/[2-4]=5`

`b)` Với `x ne -1;x ne -5` có:

`A=[(x+2)(x+1)-5x-1-(x+5)]/[(x+1)(x+5)]`

`A=[x^2+x+2x+2-5x-1-x-5]/[(x+1)(x+5)]`

`A=[x^2-3x-4]/[(x+1)(x+5)]`

`A=[(x+1)(x-4)]/[(x+1)(x+5)]`

`A=[x-4]/[x+5]`

`c)` Với `x ne -5; x ne -1; x ne 4` có:

`P=A.B=[x-4]/[x+5].[-10]/[x-4]`

           `=[-10]/[x+5]`

Để `P` nguyên `<=>[-10]/[x+5] in ZZ`

    `=>x+5 in Ư_{-10}`

Mà `Ư_{-10}={+-1;+-2;+-5;+-10}`

`=>x={-4;-6;-3;-7;0;-10;5;-15}` (t/m đk)

29 tháng 6 2021

`a)100x^2-20x+1`

`=(10x-1)^2`

Thay `x=1/10`

`=>100x^2-20x+1=(1-1)^2=0`

`b)49x^2-42x+10`

`=49*4/49-42*2/7+10`

`=4-12+10=2`

`c)25x^2+40x+16y^2`

`=(5x+4y)^2=(2+3)^2=25`

Ta có: \(A=\dfrac{2x}{1-x^3}+\dfrac{1}{x^2-x}+\dfrac{1}{x^2+x+1}\)

\(=\dfrac{-2x}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{1}{x\left(x-1\right)}+\dfrac{1}{x^2+x+1}\)

\(=\dfrac{-2x^2+x^2+x+1+x^2-x}{x\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\dfrac{1}{x\left(x-1\right)\left(x^2+x+1\right)}\)

Thay x=10 vào A, ta được:

\(A=\dfrac{1}{10\cdot\left(10^3-1\right)}=\dfrac{1}{10\cdot999}=\dfrac{1}{9990}\)

17 tháng 4 2021

\(A=\left(\dfrac{x^2}{x^3-4x}+\dfrac{6}{6-3x}+\dfrac{1}{x+2}\right):\left(x-2+\dfrac{10-x^2}{x+2}\right)\)ĐK : \(x\ne-2;2\)

\(=\left(\dfrac{x}{x-4}+\dfrac{2}{2-x}+\dfrac{1}{x+2}\right):\left(\dfrac{x^2-4+10-x^2}{x+2}\right)\)

\(=\left(\dfrac{x}{x-4}+\dfrac{2x+4+2-x}{\left(x-2\right)\left(x+2\right)}\right):\left(\dfrac{6}{x+2}\right)=\left(\dfrac{x}{x-4}+\dfrac{x+6}{\left(x-2\right)\left(x+2\right)}\right):\left(\dfrac{6}{x+2}\right)\)

\(=\left(\dfrac{x\left(x^2-4\right)+\left(x+6\right)\left(x-4\right)}{\left(x-4\right)\left(x-2\right)\left(x+2\right)}\right):\dfrac{6}{x+2}\)

\(=\dfrac{x^3-4x+x^2-2x+24}{\left(x-4\right)\left(x-2\right)\left(x+2\right)}:\dfrac{6}{x+2}=\dfrac{x^3+x^2-6x+24}{\left(x-4\right)\left(x-2\right)\left(x+2\right)}.\dfrac{x+2}{6}\)

\(=\dfrac{x^3+x^2-6x+24}{6\left(x-4\right)\left(x-2\right)}=\dfrac{\left(x+4\right)\left(x^2-3x+6\right)}{6\left(x-4\right)\left(x-2\right)}\)

17 tháng 4 2021

P/s : mình thấy đề này cứ sai sai ở đâu ý ! 

b, Ta có : \(\dfrac{\left(x+4\right)\left(x^2-3x+6\right)}{6\left(x-4\right)\left(x-2\right)}=2\)

\(\Leftrightarrow\dfrac{\left(x+4\right)\left(x^2-3x+6\right)-12\left(x-4\right)\left(x-2\right)}{6\left(x-4\right)\left(x-2\right)}=0\)

\(\Rightarrow x^3-11x^2+66x-72=0\)