\(\dfrac{1}{2.7}\)+\(\dfrac{1...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 3 2024

D = \(\dfrac{1}{2.7}\) + \(\dfrac{1}{7.12}\) + \(\dfrac{1}{12.17}\) + ... + \(\dfrac{1}{37.42}\)

D = \(\dfrac{5}{5}\).(\(\dfrac{1}{2.7}\) + \(\dfrac{1}{7.12}\)\(\dfrac{1}{12.17}\)+...+ \(\dfrac{1}{37.42}\))

D = \(\dfrac{1}{5}\).\(\left(\dfrac{5}{2.7}+\dfrac{5}{7.12}+\dfrac{5}{12.17}+...+\dfrac{5}{37.42}\right)\)

D = \(\dfrac{1}{5}\).(\(\dfrac{1}{2}\) - \(\dfrac{1}{7}\) + \(\dfrac{1}{7}\) - \(\dfrac{1}{12}\) + \(\dfrac{1}{12}\) - \(\dfrac{1}{17}\) + ... + \(\dfrac{1}{37}\) - \(\dfrac{1}{42}\))

D = \(\dfrac{1}{5}\).( \(\dfrac{1}{2}\) - \(\dfrac{1}{42}\))

D = \(\dfrac{1}{5}\) . \(\dfrac{10}{21}\)

D = \(\dfrac{2}{21}\)

29 tháng 3 2024

\(D=\dfrac{1}{2.7}+\dfrac{1}{7.12}+\dfrac{1}{12.17}+...+\dfrac{1}{37.42}\)

\(=\dfrac{1}{5}.\left(\dfrac{7-2}{2.7}+\dfrac{12-7}{7.12}+\dfrac{17-12}{12.17}+...+\dfrac{42-37}{37.42}\right)\)

\(=\dfrac{1}{5}.\left(\dfrac{1}{2}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{12}+\dfrac{1}{12}-\dfrac{1}{17}+...+\dfrac{1}{37}-\dfrac{1}{42}\right)\)

\(=\dfrac{1}{5}.\left(\dfrac{1}{2}-\dfrac{1}{42}\right)\)

\(=\dfrac{1}{5}.\dfrac{10}{21}\)

\(=\dfrac{2}{21}\)

3 tháng 4 2017

B=\(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}\)

B=\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}\)

B=\(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}\)

B= 1-\(\dfrac{1}{8}\)

B= \(\dfrac{7}{8}\)

24 tháng 4 2017

\(A=\dfrac{5}{9}-\dfrac{5}{8}+\dfrac{2}{3}+\dfrac{4}{9}+\dfrac{-3}{8}+\dfrac{1}{3}\\ =\dfrac{5}{9}+\dfrac{-5}{8}+\dfrac{2}{3}+\dfrac{4}{9}+\dfrac{-3}{8}+\dfrac{1}{3}\\= \left(\dfrac{5}{9}+\dfrac{4}{9}\right)+\left(\dfrac{2}{3}+\dfrac{1}{3}\right)+\left(\dfrac{-5}{8}+\dfrac{-3}{8}\right)\\ =1+1+\left(-1\right)\\ =2+\left(-1\right)\\ =1\)

2 tháng 5 2017

\(A=\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}+\dfrac{1}{110}+\dfrac{1}{132}\)

\(=\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+\dfrac{1}{8.9}+\dfrac{1}{9.10}+\dfrac{1}{10.11}+\dfrac{1}{11.12}\)

\(=\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{12}\)

\(=\dfrac{1}{5}-\dfrac{1}{12}=\dfrac{12}{60}-\dfrac{5}{60}=\dfrac{7}{60}\)

Vậy \(A=\dfrac{7}{60}\)

2 tháng 5 2017

\(A=\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+\dfrac{1}{8.9}+\dfrac{1}{9.10}+\dfrac{1}{10.11}+\dfrac{1}{11.12}\)

\(A=\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{12}\)

\(A=\dfrac{1}{5}-\dfrac{1}{12}\)

\(A=\dfrac{7}{60}\)

17 tháng 4 2017

Áp dụng tính chất phân phối, rồi tính giá trị biểu thức.

Chẳng hạn,

Với , thì

ĐS. ; C = 0.



Xem thêm tại: http://loigiaihay.com/bai-77-trang-39-phan-so-hoc-sgk-toan-6-tap-2-c41a5943.html#ixzz4eU1fQCGw

14 tháng 3 2017

C=0

25 tháng 7 2017

A= \(\dfrac{-3}{5}-\dfrac{-4}{5}+\dfrac{-9}{10}\)

A = \(\dfrac{-7}{10}\)

17 tháng 3 2017

D = \(\dfrac{3}{5.8}+\dfrac{3}{8.11}+\dfrac{3}{11.14}+...+\dfrac{3}{2006.2009}\)

= \(\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{14}+...+\dfrac{1}{2006}-\dfrac{1}{2009}\)

= \(\dfrac{1}{5}-\dfrac{1}{9}=\dfrac{2004}{10045}\)

17 tháng 3 2017

C = \(\dfrac{10}{7.12}+\dfrac{10}{12.17}+\dfrac{10}{17.22}+...+\dfrac{10}{502.507}\)

= \(\dfrac{10}{5}\left(\dfrac{5}{7.12}+\dfrac{5}{12.17}+\dfrac{5}{17.22}+...+\dfrac{5}{502.507}\right)\)

= \(\dfrac{10}{5}\left(\dfrac{1}{7}-\dfrac{1}{12}+\dfrac{1}{12}-\dfrac{1}{17}+\dfrac{1}{17}-\dfrac{1}{22}+....+\dfrac{1}{502}-\dfrac{1}{507}\right)\)

= \(\dfrac{10}{5}\left(\dfrac{1}{5}-\dfrac{1}{507}\right)\)

= \(\dfrac{10}{5}.\dfrac{502}{2535}\)

= \(\dfrac{1000}{3549}\)

28 tháng 4 2017

Bạn hk giỏi Toán thật đấy ^-^

30 tháng 4 2018

\(D=\left(\dfrac{157}{8}:\dfrac{7}{12}-\dfrac{53}{4}:\dfrac{7}{12}\right).\dfrac{4}{5}=\left(\dfrac{157.3.4}{2.4.7}-\dfrac{53.3.4}{4.7}\right).\dfrac{4}{5}=\left(\dfrac{417}{14}-\dfrac{159}{7}\right).\dfrac{4}{5}=\dfrac{153}{14}.\dfrac{4}{5}=\dfrac{306}{35}\)

16 tháng 5 2018

F=(9.75.21\(\dfrac{3}{7}\)+\(\dfrac{39}{4}\).18\(\dfrac{4}{7}\)).\(\dfrac{15}{78}\)

=(\(\dfrac{39}{4}\).21\(\dfrac{3}{7}\)+\(\dfrac{39}{4}\).18\(\dfrac{4}{7}\)).\(\dfrac{15}{78}\)

=[\(\dfrac{39}{4}\).(21\(\dfrac{3}{7}\)+18\(\dfrac{4}{7}\))].\(\dfrac{15}{78}\)

=[\(\dfrac{39}{4}\).(21+18)+(\(\dfrac{3}{7}\)+\(\dfrac{4}{7}\))].\(\dfrac{15}{78}\)

=[\(\dfrac{39}{4}\).(39+1)].\(\dfrac{15}{78}\)

=(\(\dfrac{39}{4}\).40).\(\dfrac{15}{78}\)

=390.\(\dfrac{15}{78}\)=75

25 tháng 6 2017

\(B=71\dfrac{38}{45}-\left(43\dfrac{8}{45}-1\dfrac{17}{57}\right)\)

\(B=71\dfrac{38}{45}-43\dfrac{8}{45}-1\dfrac{17}{57}\)

\(B=28\dfrac{2}{3}-1\dfrac{17}{57}=27\dfrac{11}{57}\)

\(D=\left(19\dfrac{5}{8}:\dfrac{7}{12}-13\dfrac{1}{4}:\dfrac{7}{12}\right).\dfrac{4}{5}\)

\(D=\dfrac{12}{7}.\left(19\dfrac{5}{8}-13\dfrac{1}{4}\right).\dfrac{4}{5}\)

\(D=\dfrac{12}{7}.\dfrac{51}{8}.\dfrac{4}{5}=\dfrac{306}{35}\)

Câu còn lại làm tương tự!

Chúc bạn học tốt!!!

21 tháng 4 2017

Ta có :

\(D=\dfrac{1}{3}+\dfrac{2}{3^2}+\dfrac{3}{3^3}+......................+\dfrac{100}{3^{100}}+\dfrac{101}{3^{101}}\)

\(3D=1+\dfrac{2}{3}+\dfrac{3}{3^2}+.....................+\dfrac{100}{3^{99}}\)

\(3D-D=\left(1+\dfrac{2}{3}+\dfrac{3}{3^2}+...................+\dfrac{101}{3^{101}}\right)-\left(\dfrac{1}{3}+\dfrac{2}{3^2}+..............+\dfrac{100}{3^{99}}\right)\)\(2D=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...............+\dfrac{1}{3^{99}}-\dfrac{100}{3^{100}}\)

\(6D=3+1+\dfrac{1}{3}+................+\dfrac{1}{3^{98}}-\dfrac{100}{3^{99}}\)

\(6D-2D=\left(3+1+\dfrac{1}{3}+.............+\dfrac{1}{3^{99}}-\dfrac{100}{3^{100}}\right)-\left(1+\dfrac{1}{3}+..........+\dfrac{1}{3^{99}}-\dfrac{100}{3^{99}}\right)\)\(4D=3-\dfrac{100}{3^{99}}-\dfrac{1}{3^{99}}+\dfrac{100}{3^{100}}\)

\(4D=3-\dfrac{300}{3^{100}}-\dfrac{3}{3^{100}}+\dfrac{100}{3^{100}}\)

\(4D=3-\dfrac{203}{3^{100}}< 3\)

\(\Rightarrow D< \dfrac{3}{4}\rightarrowđpcm\)

~ Chúc bn học tốt ~

Câu 1: 

a: ĐKXĐ: x+5<>0

hay x<>-5

b: ĐKXĐ: x-2<>0

hay x<>2