Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\left(a+b\right)^2=a^2+2ab+b^2=a^2-2ab+b^2+4ab=\left(a-b\right)^2+4ab^{\left(đpcm\right)}\)
b)Từ kết quá câu a),ta suy ra: \(\left(a-b\right)^2=\left(a+b\right)^2-4ab=9^2-4.20=81-80=1\)
\(\Rightarrow a-b=1\Rightarrow\left(a-b\right)^{2015}=1^{2015}=1\)
Vậy \(\left(a-b\right)^{2015}=1\)
Ta có :
( a + b + c )2 = a2 + b2 + c2 + 2ab + 2 bc+ 2ac = 0
Mà a2 + b 2 + c2 = 1
=> 2ab + 2bc + 2ac = - 1
=> ab + bc + ac = \(\frac{-1}{2}\)
=> ( ab + bc + ac ) 2 = a2b2 + a2c2 + b2c 2 + 2ab2c + 2ac2b + 2a2bc = \(\left(\frac{-1}{2}\right)^2\)=\(\frac{1}{4}\)
=> a2b2 + a2c2 + b2c2 + 2abc ( a + b +c ) = \(\frac{1}{4}\)
mà a + b + c = 0 => 2abc ( a +b +c ) = 0
=> a2b2 + b2c2 + c2a2 = \(\frac{1}{4}\)
Ta có : ( a2 + b2 + c2 )2 = a4 + b4 + c4 + 2 ( a2b2 + b2c2 + c2a2 ) = 1
=> a4 +b4 + c4 + 2. \(\frac{1}{4}\) = 1
=> a4 + b4 + c4 = 1 - \(\frac{1}{2}\)
=> a4 + b4 + c4 = \(\frac{1}{2}\)
Lời giải:
$3a^2+3b^2=10ab$
$\Leftrightarrow 3a^2+3b^2-10ab=0$
$\Leftrightarrow (3a-b)(a-3b)=0$
$\Leftrightarrow b=3a$ hoặc $a=3b$.
Nếu $b=3a$ thì:
$P=\frac{3a-a}{3a+a}=\frac{2a}{4a}=\frac{1}{2}$
Nếu $a=3b$ thì:
$P=\frac{b-3b}{b+3b}=\frac{-2b}{4b}=\frac{-1}{2}$
Do \(\left(a+b\right)^2=a^2+2ab+b^2\)nên \(a^2+b^2=\left(a+b\right)^2-2ab=9^2-2.20=41\)
Ta có: \(\left(a-b\right)^2=a^2-2ab+b^2=41-2.20=1\Rightarrow a-b=1\)hoặc \(a-b=-1\)
Với \(a-b=1\) thì \(\left(a-b\right)^{2015}=1^{2015}=1\)
Với \(a-b=-1\) thì \(\left(a-b\right)^{2015}=\left(-1\right)^{2015}=-1\)
Ta có\(\left(a-b\right)^2=a^2+2ab+b^2\)
\(=\left(a^2+2ab+b^2\right)-4ab\)
\(=\left(a+b\right)^2-4ab\)
\(=81-80=1\)
Mà \(a< b\Rightarrow a-b=-1\)
\(\Rightarrow\left(a-b\right)^{2017}=-1\)
bài này sai