Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=1-\frac{1}{3}+\frac{2}{3.5}+...+\frac{2}{15.17}\)
\(=1-\frac{1}{3}+2.\left(\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{15.17}\right)\)
\(=1-\frac{1}{3}+2.\left(\frac{1}{3}-\frac{1}{17}\right)\)
\(=\frac{62}{51}\)
\(\Leftrightarrow A=1-\frac{1}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+....+\frac{2}{13.15}+\frac{2}{15.17}\)
\(\Leftrightarrow A=\frac{2}{1.3}+\frac{2}{3.5}+......+\frac{2}{13.15}+\frac{2}{15.17}\)
\(\Leftrightarrow A=1-\frac{1}{17}=\frac{16}{17}\)
\(\frac{\left(\frac{3}{15}+\frac{1}{4}+\frac{7}{20}\right)\times\frac{17}{49}}{5\frac{1}{3}+\frac{2}{5}}\)
\(=\frac{\left(\frac{12}{60}+\frac{15}{60}+\frac{21}{60}\right)\times\frac{17}{49}}{\frac{16}{3}\times\frac{2}{5}}\)
\(=\frac{\frac{48}{60}\times\frac{17}{49}}{\frac{80}{15}+\frac{6}{15}}\)
\(=\frac{\frac{816}{2940}}{\frac{86}{15}}\)
\(=\frac{816}{2940}:\frac{86}{15}\)
\(=\frac{816}{2940}\times\frac{15}{86}\)
\(=\frac{68}{245}\times\frac{15}{86}\)
\(=\frac{102}{2107}\)
2/3.5 + 2/5.7 + 2/7.9 + ... + 2/41.43
= 1/3 - 1/5 + 1/5 - 1/7 + 1/7 - 1/9 + ... + 1/41 - 1/43
= 1/3 - 1/43
= 40/129
ỦNG HỘ NHA
Chuyển vế tất cả số hạng tự do sang phải, ta được \(x=1931\)bạn nhé!
ta có 1 - 1/3 + 1/3 - 1/5 +1/5 - 1/7 +... +1/n-2 - 1/n=60/61
rút gọn ta còn 1-1/n=60/61
n-1/n=60/61
vậy n= 61
\(C=\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+\frac{2}{99}+\frac{2}{143}\)
\(C=\frac{2}{3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}\)
\(C=\frac{2}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}\)
\(C=\frac{2}{3}+\frac{1}{3}-\frac{1}{13}\)
\(C=1-\frac{1}{13}\)
\(C=\frac{12}{13}\)
\(C=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}\)
\(C=\frac{1}{1}-\frac{1}{3}=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}\)
\(C=\frac{1}{1}-\frac{1}{13}\)
\(C=\frac{12}{13}\)
ta có
A=\(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{19.21}=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{19}-\frac{1}{21}=\frac{1}{3}-\frac{1}{21}=\frac{2}{7}\)
\(=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+....+\frac{2}{19.21}\)
\(=2\left(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{19.21}\right)\)
\(=2\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{19}-\frac{1}{21}\right)\)
\(=2\left(\frac{1}{3}-\frac{1}{21}\right)\)
=\(\frac{4}{7}\)