Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}+\frac{1}{132}\)
\(=\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}+\frac{1}{11.12}\)
\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}\)
\(=\frac{7}{60}\)
A = 1/5.6 + 1/6.7 + 1/7.8 + 1/8.9 + 1/9.10 + 1/10.11 + 1/11.12
= 1/5 - 1/6 + 1/6 - 1/7 + 1/7 - 1/8 + ... + 1/11 - 1/12
= 1/5 - 1/12
= 12/60 - 5/60
= 7/60
Vậy A = 7/60.
Xét A , ta thấy:
\(A=\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}+\frac{1}{132}\)
\(A=\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}+\frac{1}{11.12}\)
Ta lại thấy: \(\frac{1}{5.6}=\frac{1}{5}-\frac{1}{6}\)
\(\frac{1}{6.7}=\frac{1}{6}-\frac{1}{7}\)
....................
\(\frac{1}{11.12}=\frac{1}{11}-\frac{1}{12}\)
\(A=\left(\frac{1}{5}-\frac{1}{6}\right)+\left(\frac{1}{6}-\frac{1}{7}\right)+....+\left(\frac{1}{11}-\frac{1}{12}\right)\)
\(A=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-....-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}\)
\(A=\frac{1}{5}+\left(-\frac{1}{6}+\frac{1}{6}\right)+\left(-\frac{1}{7}+\frac{1}{7}\right)+....+\left(-\frac{1}{11}+\frac{1}{11}\right)-\frac{1}{12}\)
\(A=\frac{1}{5}-\frac{1}{12}=\frac{7}{60}\)
\(\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{11.12}=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{11}-\frac{1}{12}=\frac{1}{5}-\frac{1}{12}=\frac{7}{60}\)
A = 1/5x6 + 1/6x7 + 1/7x8 + 1/8x9 + 1/9x10 + 1/10x11 + 1/11x12
A = 1/5 - 1/6 + 1/6 - 1/7 + 1/7 - 1/8 + 1/8 -1/9 + 1/10 - 1/11 + 1/11 - 1/12 =
A = 1/5 - 1/12
A = 7/60
\(A=\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}+\frac{1}{132}\)
\(A=\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}+\frac{1}{11.12}\)
\(A=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}\)
\(A=\frac{1}{5}-\frac{1}{12}\)
\(A=\frac{7}{60}\)
mình biến đởi phần trong |......| rồi bạn thay vào nha
1/30 + 1/42 + 1/56 + 1/72 +1/ 90 + 1/110 + 1/132
=1/5.6 + 1/6.7 + 1/7.8 + 1/8.9 + 1/9.10 +1/ 10.11
=1/5 -1/6 +1/6 - 1/7 +......+1/10 - 1/11
=1/5 - 1/11=11/55 - 5/55 =6/ 55
thay vào |....|=> |6/55 - x | = 2/3 => mở ra 2 trường hợp mà tính nha
chúc hok tốt
=>(1/5.6+1/6.7+1/7.8+1/9.10+1/10.11+1/11.12)-x=2/3
=>(1/5-1/+1/6-1/7+...+1/11-1/12)-x=2/3
=>(1/5-1/12)-x=2/3
=>7/60-x=2/3
=>x=7/60-2/3
=>x=-11/20
\(A=\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}+\frac{1}{132}\)
\(A=\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+\frac{1}{8\cdot9}+\frac{1}{9\cdot10}+\frac{1}{10\cdot11}+\frac{1}{11\cdot12}\)
\(A=\frac{1}{5}+\frac{1}{6}-\frac{1}{6}+\frac{1}{5}...+\frac{1}{11}-\frac{1}{12}\)
\(A=\frac{1}{5}-\frac{1}{12}\)
\(A=\frac{7}{60}\)
A = \(\frac{1}{5.6}+\frac{1}{6.7}+...+\)\(\frac{1}{10.11}+\frac{1}{11.12}\)
A = \(\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\)\(\frac{1}{11}-\frac{1}{12}\)
A = \(\frac{1}{5}-\frac{1}{12}\)
A = \(\frac{7}{60}\)
\(A=\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+.....+\frac{1}{132}\)
\(A=\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+.....+\frac{1}{11.12}\)
\(A=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+....+\frac{1}{11}-\frac{1}{12}\)
\(A=\frac{1}{5}-\frac{1}{12}\)
\(A=\frac{7}{60}\)
Ta có:
A = \(\frac{1}{5.6}\)+ \(\frac{1}{6.7}\)+\(\frac{1}{7.8}\)+\(\frac{1}{8.9}\)+\(\frac{1}{9.10}\)+\(\frac{1}{10.11}\)+\(\frac{1}{11.12}\)
Bạn xem lời giải của mình nhé:
Giải:
\(A=\frac{1}{30}+\frac{1}{42}+...+\frac{1}{132}\\ =\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+...+\frac{1}{11.12}\\ =\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{11}-\frac{1}{12}\\ =\frac{1}{5}-\frac{1}{12}=\frac{12-5}{60}=\frac{7}{60}\)
Chúc bạn học tốt!
\(A=\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}+\frac{1}{132}\)
\(A=\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+\frac{1}{8\cdot9}+\frac{1}{9\cdot10}+\frac{1}{10\cdot11}+\frac{1}{11\cdot12}\)
\(A=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}\)
\(A=\frac{1}{5}-\frac{1}{12}=\frac{7}{60}\)