Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=1-3+3^2-3^3+...-3^{2021}+3^{2022}\)
\(\Rightarrow3A=3-3^2+3^3-3^4+...-3^{2022}+3^{2023}\)
\(\Rightarrow3A+A=4A\)
\(=\left(1-3+3^2-3^3+...-3^{2021}+3^{2022}\right)+\left(3-3^2+3^3-3^4+...-3^{2022}+3^{2023}\right)\)
\(=1+3^{2023}\)
\(\Rightarrow4A-3^{2023}=1+3^{2023}-3^{2023}=1\)
\(A=1-3+3^2-3^3+...+3^{2021}-3^{2022}\)
\(3A=3-3^2+3^3-3^4+...+3^{2022}-3^{2023}\)
\(3A-A=\left(1-3+3^2-3^3+...+3^{2021}-3^{2022}\right)-\left(3-3^2+3^3-3^4+...+3^{2022}-3^{2023}\right)\)
\(2A=3^{2023}-1\)
\(\Rightarrow A=\left(3^{2023}-1\right)\div2\)
\(\text{cái này mình sợ sai nên bạn có thể nhờ cô chữa}\)
Bài 1 :
\(M=\dfrac{30-2^{20}}{2^{18}}=\dfrac{2.15-2^{20}}{2^{18}}=\dfrac{15}{2^{17}}-2^2=\dfrac{15}{2^{17}}-4< 0\left(\dfrac{15}{2^{17}}< 1\right)\)
\(N=\dfrac{3^5}{1^{2021}+2^3}=\dfrac{3^5}{9}=\dfrac{3^5}{3^2}=3^3=27\)
\(\Rightarrow M< N\)
Bài 3 :
a) \(t^2+5t-8\) khi \(t=2\)
\(=5^2+2.5-8\)
\(=25+10-8\)
\(=27\)
b) \(\left(a+b\right)^2-\left(b-a\right)^3+2021\left(1\right)\)
\(\left\{{}\begin{matrix}a=5\\b=a+1=6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+b=11\\b-a=1\end{matrix}\right.\)
\(\left(1\right)=11^2-1^3+2021=121-1+2021=2141\)
c) \(x^3-3x^2y+3xy^2-y^3=\left(x-y\right)^3\left(1\right)\)
\(\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\) \(\Rightarrow x-y=1\)
\(\left(1\right)=1^3=1\)
S = ( 1 - \(\dfrac{1}{2^2}\))(1-\(\dfrac{1}{3^2}\))(1-\(\dfrac{1}{4^2}\))....(1-\(\dfrac{1}{50^2}\))
S = \(\dfrac{2^2-1}{2^2}\).\(\dfrac{3^2-1}{3^2}\).\(\dfrac{4^2-1}{4^2}\)...\(\dfrac{50^2-1}{50^2}\)
Vì em lớp 6 nên phải làm thêm bước này nữa:
Ta có
n2 - 1 = n2 - n + n - 1 = (n2 - n) + (n - 1) = n(n-1) + (n-1) =(n-1)(n+1)
Áp dụng công thức vừa chứng minh trên vào tổng S ta có:
S = \(\dfrac{\left(2-1\right)\left(2+1\right)}{2^2}\).\(\dfrac{\left(3-1\right)\left(3+1\right)}{3^2}\)....\(\dfrac{\left(50-1\right)\left(50+1\right)}{50^2}\)
S = \(\dfrac{1.3}{2^2}\).\(\dfrac{2.4}{3^2}\)......\(\dfrac{49.51}{50^2}\)
S = \(\dfrac{\left(3.4.5.6....49\right)^2.1.2.50.51}{\left(3.4.5.6...49\right)^2.2.2.50.50}\)
S = \(\dfrac{1}{2}\) . \(\dfrac{51}{50}\)
S = \(\dfrac{51}{100}\)
`A = 2 + 2^2+ ... + 2^2017`
`=> 2A = 2^2 + 2^3 + ... + 2^2018`
`=> 2A - A = (2^2 + 2^3 + ... + 2^2018) - (2 + 2^2 + ... +2^2017)`
`=> A = 2^2018 - 2`
`B = 1 + 3^2 + ... + 3^2018`
`=> 3^2B = 3^2 + 3^4 + ... + 3^2020`
`=> 9B-B =(3^2 + 3^4 + ... + 3^2020) - (1 + 3^2 + ... + 3^2018`
`=> 8B = 3^2020 - 1`
`=> B = (3^2020 - 1)/8`
`C = 5 + 5^2 - 5^3 + ... + 5^2018`
`=> 5C = 5^2 + 5^3 - 5^4 + ... +5^2019`
`=> 5C + C = ( 5^2 + 5^3 - 5^4 + ... 5^2019) + (5 + 5^2 - 5^3 + ... + 5^2018)`
`=> 6C = 55 + 5^2019`
`=> C = (5^2019 + 55)/6`
Đặt A=1/10+1/40+1/88+1/154+1/238+1/340
A=1/2.5+1/5.8+1/8.11+1/11.14+1/14.17+1/17.20
3A=3/2.5+3/5.8+....+3/17.20
3A=1/2-1/5+1/5-1/8+...+1/17-1/20
3A=1/2-1/20
3A=9/20
2)
Giữ nguyên p/s 1/2^2
Ta có:1/3^2<1/2.3
1/4^2<1/3.4
...............
1/n^2<1/(n-1).n
=>1/3^2+1/4^2+...+1/n^2<1/2.3+1/3.4+...+1/(n-1).n
=>1/3^2+1/4^2+.....+1/n^2<1/2-1/3+1/3-1/4+.........+1/n-1-1/n
=>1/2^2+1/3^2+.....+1/n^2<1/2^2+1/2-1/n
=>1/2^2+1/3^2+....+1/n^2<3/4-1/n<3/4
3)
2B=2/3.5+2/5.7+....+2/47.49+2/49.51
2B=1/3-1/5+1/5-1/7+.....+1/47-1/49+1/49-1/51
2B=1/3-1/51
2B=16/51
B=16/51:2
B=8/51
A=1+1/2+1/2^2+...+1/2^2010
2A=2+1+1/2+....+1/2^2009
2A-A=(2+1+1/2+...+1/2^2009)-(1+1/2+1/2^2+....+1/2^2010)
A=2-1/2^2010
a,( 393+390) : (317. 373)
= (33+1). 390 : 390
= 33+1
=27+1
=28
b,(556+57) : (549+1)
=57. (549+1) : (549+1)
=57= 78125
c,(722+721+720) ; (25+24+32)
= 720. (72+71+1) : [24. (2+1)+32 ]
= 720. 57 : [ 24. 3 +32 ]
= 720. 57 : ( 24+3) . 3
= 720. 57 : 19 . 3
= 720. 57 : 57
= 720
3A= 1+ \(\frac{1}{3}+\left(\frac{1}{3}\right)^2+...+\left(\frac{1}{3}\right)^7\)
2A= 1 - \(\left(\frac{1}{3}\right)^8\)
A= \(\frac{1-\left(\frac{1}{3}\right)^8}{2}\)
Vậy....