K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2018

\(\hept{\begin{cases}xyz=12\\x^3+y^3+z^3=36\end{cases}}\Leftrightarrow x^3+y^3+z^3=3xyz\)

\(\Leftrightarrow x^3+y^3+z^3-3xyz=0\)

\(\Leftrightarrow\left(x+y\right)^3-3xy\left(x+y\right)-3xyz+z^3=0\)

\(\Leftrightarrow\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2\right)-3xy\left(x+y+z\right)=0\)

\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)=0\)

\(\Leftrightarrow x=y=z\left(x+y+z>0\right)\)

Thay x=y=z vào r tính thôi bạn

2 tháng 1 2016

ta có x/xy+x+1 +y/yz+y+1 +z/xz+z+1

=xz/xyz+xz+z +xyz/xyz^2+xyz+xz +z/xz+z+1

=xz/1+xz+z +1/z+1+xz +z/ xz+z+1

=xz+z+1 /xz+z+1 =1

26 tháng 8 2020

giúp mình với mọi người ơi

26 tháng 8 2020

a, A=xy+7x-3y-21                                                         b,B= xyz+xz-yz-z+xy+x-y-1

    A=(xy+7x)-(3y+21)                                                      B=(xyz+xz)-(yz+z)+(xy+x)-(y+1)

    A=x(y+7)-3(y+7)                                                          B=xz(y+1)-z(y+1)+x(y+1)-(y+1)

    A=(y+7)(x-3)                                                                B=(y+1)(xz-z+x-1)

Thay x=103, y=-17 vào biểu thức ta có:                         B=(y+1)[(xz-z)+(x-1)]

A=(-17+7)(103-3)                                                            B=(y+1)[z(x-1)+(x-1)]

A=(-10)(100)                                                                   B=(y+1)(x-1)(z+1)

A=-1000                                                                          Thay x=-9, y=-21, z=-31 vào biểu thức ta có:

                                                                                           B=(-21+1)(-9-1)(-31+1)

                                                                                           B=(-20)(-10)(-30)

                                                                                           B=200(-30)

                                                                                           B=-6000

                                                    

3 tháng 3 2017

Bạn thay y xyz=2010 vào A ta được

A= xyz*x/xy+xyz*x+xyz + y/yz+y+xyz + z/xz+z+1

suy ra A=x^2yz/xy(1+xz+z) + y/y(z+1+xz) + z/xz+x+1

 A= xz/1+xz+z + 1/z+1+xz + x/xz+z+1 = xz+1+x/xz+1+x =1

Vay A=1

14 tháng 7 2016

Thay xyz = 2011 vào N được : 

\(N=\frac{x^2yz}{xy+x^2yz+xyz}+\frac{y}{yz+y+xyz}+\frac{z}{xz+z+1}=\frac{xy.xz}{xy\left(z+xz+1\right)}+\frac{y}{y\left(z+xz+1\right)}+\frac{z}{z+xz+1}\)

\(=\frac{xz}{z+xz+1}+\frac{1}{z+xz+1}+\frac{z}{z+xz+1}=\frac{z+xz+1}{z+xz+1}=1\)

22 tháng 5 2022

\(A=\dfrac{1}{xy+x+1}+\dfrac{1}{yz+y+1}+\dfrac{1}{xz+z+1}\)

\(A=\dfrac{1}{xy+x+xyz}+\dfrac{1}{yz+y+1}+\dfrac{1}{xz+z+1}\)

\(A=\dfrac{1}{x\left(y+1+yz\right)}+\dfrac{1}{yz+y+1}+\dfrac{1}{xz+z+1}\)

\(A=\dfrac{xyz}{x\left(y+1+yz\right)}+\dfrac{1}{yz+y+1}+\dfrac{1}{xz+z+1}\)

\(A=\dfrac{yz}{y+1+yz}+\dfrac{1}{y+yz+1}+\dfrac{1}{xz+z+1}\)

\(A=\dfrac{yz+1}{y+1+yz}+\dfrac{1}{xz+z+1}\)

\(A=\dfrac{yz+xyz}{y+xyz+yz}+\dfrac{1}{xz+z+1}\)

\(A=\dfrac{y\left(z+xz\right)}{y\left(1+xz+z\right)}+\dfrac{1}{xz+z+1}\)

\(A=\dfrac{z+xz+1}{xz+z+1}\)

\(A=1\)

 

 

 

22 tháng 5 2022

uii sai thì thông cảm nha bạn:<