K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

bó tay luôn

9 tháng 5 2017

BẠN XEM LẠI CÁI ĐỀ XEM ĐÚNG KO

9 tháng 5 2017

\(\frac{11}{12}.\frac{3.\left(1+\frac{1}{7}-\frac{1}{11}+\frac{1}{1001}-\frac{1}{13}\right)}{9.\left(\frac{1}{1001}-\frac{1}{13}+\frac{1}{7}-\frac{1}{11}+1\right)}=\frac{11}{12}.\frac{1}{3}=\frac{11}{36}\)

10 tháng 1 2018

A=(24.47-23)/(24+47-23) . [3(1+1/7-1/11-1/13+1/1001)]/[9(1+1/7-1/11-1/13+1/1001)]

=1105/48 . 3/9 =1105/144

22 tháng 3 2016

Mình​ cũng đang k pit lm câu này

19 tháng 6 2019

#)Giải ;

b) Đặt \(N=1+2+2^2+2^3+...+2^{2012}\)

\(\Rightarrow2N=2+2^2+2^3+2^4+...+2^{2013}\)

\(\Rightarrow2N-N=N=\left(2+2^2+2^3+2^4+...+2^{2013}\right)-\left(1+2+2^2+2^3+...+2^{2012}\right)\)

\(\Rightarrow N=2^{2013}-1\)

Thay N vào M, ta có :

\(M=\frac{2^{2013}-1}{2^{2014}-2}\)

19 tháng 6 2019

Thêm Cho pen 

\(M=\frac{2^{2013}-1}{2^{2014}-2}=\frac{2^{2013}-1}{2.\left(2^{2013}-1\right)}=\frac{1}{2}\)

Phải tính  hết nhé

29 tháng 9 2017

\(A=\frac{24.47-23}{24+47-23}.\frac{3+\frac{3}{7}+\frac{3}{11}-\frac{3}{1001}+\frac{3}{13}}{\frac{9}{1001}-\frac{9}{13}+\frac{9}{7}+9}\)

\(A=\frac{1105}{48}.\frac{3.\left(1+\frac{1}{7}+\frac{1}{11}-\frac{1}{1001}+\frac{1}{13}\right)}{9.\left(\frac{1}{1001}-\frac{1}{11}+\frac{1}{7}+1\right)}\)

\(A=\frac{1105}{48}.\frac{3.\frac{1311}{1001}}{9.\frac{1054}{1001}}\)

\(A=\frac{1105}{48}.\frac{3933}{1001}:\frac{9468}{1001}\)

\(A=\frac{1105}{48}.\frac{437}{1052}\)

\(A\approx9,56\)

Chú ý : Dấu xấp xỉ \(\approx\)

19 tháng 10 2017

10 nha anh k em nha

13 tháng 12 2018

\(a)A=\frac{24\cdot47-23}{24+47-23}\cdot\frac{3+\frac{3}{7}+\frac{3}{11}+\frac{3}{1001}+\frac{3}{13}}{\frac{9}{1001}+\frac{9}{13}+\frac{9}{7}+\frac{9}{11}+9}\)

\(=\frac{(23+1)\cdot47-23}{24+47-23}\cdot\frac{3+\frac{3}{7}+\frac{3}{11}+\frac{3}{1001}+\frac{3}{13}}{\frac{9}{1001}+\frac{9}{13}+\frac{9}{7}+\frac{9}{11}+9}=\frac{47-23+24}{47-23+24}\cdot\frac{3(1+\frac{1}{7}+\frac{1}{11}+\frac{1}{1001}+\frac{1}{13})}{3(3+\frac{3}{1001}+\frac{3}{13}+\frac{3}{7}+\frac{3}{11})}\)

\(=\frac{1+\frac{1}{7}+\frac{1}{11}+\frac{1}{1001}+\frac{1}{13}}{3+\frac{3}{1001}+\frac{3}{13}+\frac{3}{7}+\frac{3}{11}}=\frac{1+\frac{1}{1001}+\frac{1}{13}+\frac{1}{7}+\frac{1}{11}}{3(1+\frac{1}{1001}+\frac{1}{13}+\frac{1}{7}+\frac{1}{11})}=\frac{1}{3}\)

\(b)\)\(\text{Đặt A = }1+2+2^2+2^3+...+2^{2012}\)

\(2A=2(1+2^2+2^3+...+2^{2012})\)

\(2A=2+2^2+2^3+...+2^{2013}\)

\(2A-A=(2+2^2+2^3+2^4+...+2^{2013})-(1+2+2^2+2^3+...+2^{2012})\)

\(\Rightarrow A=2^{2013}-1\)

\(\text{Quay lại bài toán,ta có :}\)

\(B=\frac{1+2+2^2+2^3+...+2^{2012}}{2^{2014}-2}=\frac{2^{2013}-1}{2^{2014}-2}=\frac{2^{2013}-1}{2(2^{2013}-1)}=\frac{1}{2}\)