K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 9 2018

\(A=x^5-5x^4+5x^3-5x^2+5x-1\)

\(=x^5-\left(x+1\right)x^4+\left(x+1\right)x^3-\left(x+1\right)x^2+\left(x+1\right)x-x+3\)

\(=x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^2+x-x+3\)

\(=3\)

Ta có : 

\(A=x^5-5x^4+5x^3-5x^2+5x-1\)

\(A=x^5-\left(x+1\right)x^4+\left(x+1\right)x^3-\left(x+1\right)x^2+\left(x+1\right)x-x+3\)\(A=x^5-x^5+x^4-x^4+x^3-x^3+x^2-x^2+x-x+3\)

\(A=3\)

P/s tham khảo nha 

hok tốt

10 tháng 9 2021

x=4

=>x+1=5

A=(x+1)x^5 -(x+1)x^4+(x+1)x^3-(x+1)x^2+(x+1)x-1

  =x^6+x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^2-x+1

  =x^6-x-1

  =4^6-4-1

  =4091

10 tháng 9 2021

\(a,A=5\cdot4^5-5\cdot4^4+5\cdot4^3-5\cdot4^2+5\cdot4+1\\ A=4^4\left(20-5\right)+4^2\left(20-5\right)+\left(20-5\right)\\ A=15\left(4^4+4^2+1\right)=15\cdot273=4095\)

\(b,x=7\Leftrightarrow x+1=8\\ \Leftrightarrow B=x^{2006}-\left(x+1\right)x^{2005}+\left(x+1\right)x^{2004}-...+\left(x+1\right)x^2-\left(x+1\right)x-5\\ B=x^{2006}-x^{2006}-x^{2005}+x^{2005}+x^{2004}-...+x^3+x^2-x^2-x-5\\ B=-x-5=-12\)

17 tháng 10 2020

Bài 4.

a) 3xy2 - 45x2y = 3xy( y - 15x )

b) 25y2 - 4x2 + 4x - 1

= 25y2 - ( 4x2 - 4x + 1 )

= ( 5y )2 - ( 2x - 1 )2

= ( 5y - 2x + 1 )( 5y + 2x - 1 )

c) x2 - 5x + xy - 5y

= x( x - 5 ) + y( x - 5 )

= ( x - 5 )( x + y )

d) x2 - 8x - 33

= x2 + 3x - 11x - 33

= x( x + 3 ) - 11( x + 3 )

= ( x + 3 )( x - 11 )

Bài 5.

a) A = ( x - 2 )3 - x2( x - 4 ) + 8

= x3 - 6x2 + 12x - 8 - x3 + 4x2 + 8

= -2x2 + 12x

B = ( x2 - 6x + 9 ) : ( x - 3 ) - x( x + 7 ) - 9

= ( x - 3 )2 : ( x - 3 ) - x2 - 7x - 9

= x - 3 - x2 - 7x - 9

= -x2 - 6x - 12

b) Với x = -1 thì A = -2.(-1)2 + 12.(-1) = -2 - 12 = -14

6 tháng 8 2020

a, \(A=\left(-5x+4\right)\left(3x-2\right)+\left(-2x+3\right)\left(x-2\right)\)

\(=-15x^2+10x+12x-8=-15x^2+22x-8\)

Thay x = -2 vào biểu thức ta có : \(-15\left(-2\right)^2+22\left(-2\right)-8\)

\(=-15.4-44-8=-112\)

b, \(B=\left(x-9\right)\left(2x+3\right)-2\left(x+7\right)\left(x-5\right)\)

\(=2x^2+3x-18x-27=2x^2-15x-27\)

Thay x = -1/2 vào biểu thức ta có : \(2\left(-\frac{1}{2}\right)^2-15\left(-\frac{1}{2}\right)-27\)

\(=2.\frac{1}{4}+\frac{15}{2}-27=\frac{11}{2}+\frac{15}{2}+27=40\)

6 tháng 8 2020

Bài làm:

a) \(A=\left(-5x+4\right)\left(3x-2\right)+\left(-2x+3\right)\left(x-2\right)\)

\(A=-15x^2+22x-8-2x^2+7x-6\)

\(A=-17x^2+29x-14\)

Thay x = -2 vào ta được:

\(A=-17.\left(-2\right)^2+29.\left(-2\right)-14\)

\(A=-68-58-14\)

\(A=-140\)

b) \(B=\left(x-9\right)\left(2x+3\right)-2\left(x+7\right)\left(x-5\right)\)

\(B=2x^2-15x-27-2\left(x^2+2x-35\right)\)

\(B=2x^2-15x-27-2x^2-4x+70\)

\(B=-19x+43\)

Thay x = -1/2 vào B ta được:

\(B=-19.\left(-\frac{1}{2}\right)+43=\frac{19}{2}+43=\frac{105}{2}\)

25 tháng 7 2016

Bài 1:

a) A= x+ 4x + 5

=x2+4x+4+1

=(x+2)2+1\(\ge\)0+1=1

Dấu = khi x+2=0 <=>x=-2

Vậy Amin=1 khi x=-2

b) B= ( x+3 ) ( x-11 ) + 2016

=x2-8x-33+2016

=x2-8x+16+1967

=(x-4)2+1967\(\ge\)0+1967=1967

Dấu = khi x-4=0 <=>x=4

Vậy Bmin=1967 <=>x=4

Bài 2:

a) D= 5 - 8x - x

=-(x2+8x-5)

=21-x2+8x+16

=21-x2+4x+4x+16

=21-x(x+4)+4(x+4)

=21-(x+4)(x+4)

=21-(x+4)2\(\le\)0+21=21

Dấu = khi x+4=0 <=>x=-4

b)đề sai à

26 tháng 7 2016

ài 1:

a) A= x+ 4x + 5

=x2+4x+4+1

=(x+2)2+1$\ge$≥0+1=1

Dấu = khi x+2=0 <=>x=-2

Vậy Amin=1 khi x=-2

b) B= ( x+3 ) ( x-11 ) + 2016

=x2-8x-33+2016

=x2-8x+16+1967

=(x-4)2+1967$\ge$≥0+1967=1967

Dấu = khi x-4=0 <=>x=4

Vậy Bmin=1967 <=>x=4

Bài 2:

a) D= 5 - 8x - x

=-(x2+8x-5)

=21-x2+8x+16

=21-x2+4x+4x+16

=21-x(x+4)+4(x+4)

=21-(x+4)(x+4)

=21-(x+4)2$\le$≤0+21=21

Dấu = khi x+4=0 <=>x=-4

b)đề sai à

27 tháng 9 2021

\(a,=\left(x+3\right)^3=\left(7+3\right)^3=10^3=1000\\ b,=\left(4-x\right)^3=\left(4-24\right)^3=\left(-20\right)^3=-8000\\ c,=\left(x-1\right)^3=\left(11-1\right)^3=10^3=1000\)

8 tháng 12 2019

A = 3x ( x- 2x + 3) - x2 ( 3x - 2 ) + 5 ( x- x ) 

A = 3x3 - 6x2 + 9x - 3x3 + 2x2 + 5x2 - 5x

A = ( 3x- 3x) - ( 6x2 - 2x2 - 5x) + ( 9x - 5x )

A = x

8 tháng 12 2019

Làm tiếp nhé lúc nãy bị lỗi

A = x2 - 4x

Thay x = 5 vào A ta được

A = 52 - 4 . 5 = 5

16 tháng 6 2017

1)Ta có:x=4=>x+1=5(1)

Mặt khác:A=x5-5x4+5x3-5x2+5x-1(2)

Thay (1) vào (2) ta có:

A=x5-(x+1)x4+(x+1)x3-(x+1)x2+(x+1)x-1

=>A=x5-x5-x4+x4+x3-x3-x2+x2+x-1

=>A=x-1=4-1=3

2)Vì a:5 dư 2,b:5 dư 3 nên:

Đặt:a=5x+2;b=5y+3

Khi đó:ab=(5x+2)(5y+3)=25xy+10y+15x+6

=5(5xy+2y+3x+1)+1

Vì 5(5xy+2y+3x+1)\(⋮\)5 nên =>5(5xy+2y+3x+1)+1:5 dư 1 hay ab:5 dư 1

Vậy ab:5 dư 1

16 tháng 6 2017

3)

a)Nhận xét:

a1=1

a2=1+2=3

a3=1+2+3=6

a4=1+2+3+4=10

Khi đó:a100=1+2+3+...+100=\(\dfrac{100.101}{2}\)=5050

an=1+2+3+...+n=\(\dfrac{n\left(n+1\right)}{2}\)

b)Gọi 2 số hạng liên tiếp là n-1;n

=>an-1=1+2+3+...+(n-1)=\(\dfrac{\left(n-1\right)n}{2}\)

=>an=\(\dfrac{\left(n+1\right)n}{2}\)(ở câu a)

Khi đó:tổng 2 số hạng liên tiếp là an+an-1 là:

an+an-1=\(\dfrac{n\left(n+1\right)+n\left(n-1\right)}{2}\)=\(\dfrac{2n.n}{2}\)

=\(\dfrac{2n^2}{2}\)=n2 là số chính phương

Vậy tổng 2 số hạng liên tiếp là số chính phương

5 tháng 9 2018

\(A=x^5-5x^4+5x^3-5x^2+5x-6\)

\(=x^5-\left(x+1\right)x^4+\left(x+1\right)x^3-\left(x+1\right)x^2+\left(x+1\right)x-x-2\)

\(=x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^2+x-x-2\)

\(=-2\)