Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(0< a< \frac{\pi}{2}\Rightarrow cosa>0\Rightarrow cosa=\sqrt{1-sin^2a}=\frac{4}{5}\)
\(\Rightarrow tana=\frac{sina}{cosa}=\frac{3}{4}\) ; \(cota=\frac{1}{tana}=\frac{4}{3}\)
\(\Rightarrow A=\frac{\frac{4}{3}+\frac{3}{4}}{\frac{4}{3}-\frac{3}{4}}=...\)
\(\frac{2sina+3cosa}{4sina-5cosa}=\frac{\frac{2sina}{cosa}+\frac{3cosa}{cosa}}{\frac{4sina}{cosa}-\frac{5cosa}{cosa}}=\frac{2tana+3}{4tana-5}=\frac{2.3+3}{4.3-5}=...\)
\(A=\frac{2sin^2a-3cos^2a}{sin^2a-2sina.cosa-cos^2a}=\frac{\frac{2sin^2a}{sin^2a}-\frac{3cos^2a}{sin^2a}}{\frac{sin^2a}{sin^2a}-\frac{2sina.cosa}{sin^2a}-\frac{cos^2a}{sin^2a}}=\frac{2-3cot^2a}{1-2cota-cot^2a}=\frac{2-3.3^2}{1-2.3-3^2}=...\)
\(A=\frac{cos^2a-sin^2a}{2sin^2a+3sina.cosa}=\frac{\frac{cos^2a}{cos^2a}-\frac{sin^2a}{sin^2a}}{\frac{2sin^2a}{cos^2a}+\frac{3sina.cosa}{cos^2a}}=\frac{1-tan^2a}{2tan^2a+3tana}=\frac{1-2^2}{2.2^2+3.2}=...\)
\(sina+cosa=\sqrt{2}\Leftrightarrow\left(sina+cosa\right)^2=2\\ \)
\(\Leftrightarrow\sin^2a+2\sin a.cosa+cos^2a=2\)
\(\Leftrightarrow1+2.sina.cosa=2\)
\(\Leftrightarrow2.sina.cosa=2-1=1\)
\(\Leftrightarrow\sin a.cosa=\frac{1}{2}\)
Vậy P=sina.cosa=\(\frac{1}{2}\)
\(Q=\sin^4a+cos^4a\)
\(\Leftrightarrow\left(sin^2a\right)^2+\left(cos^2a\right)^2\)
\(\Leftrightarrow\left(sin^2a+cos^2a\right)^2-2.sin^2a.cos^2a\)
\(\Leftrightarrow1^2-2.sin^2a.cos^2a\) tách tiếp rồi thế vào là được .tương tự phàn P ý
còn R thì tách sin^3a=sin^2a+sina tương tự cos mũ 3 a cụng vậy
theo tớ là như thế còn có sai thì đừng có ném đá ném gạch na
Vì 0<a,b<\(\frac{\pi}{2}\)nên tana,tanb>0 ⇒ tana+tanb>0
ta có tan(a+b)=\(\frac{tana+tanb}{1-tana.tanb}\) ⇔tana+tanb=tan(a+b)(1-3+2\(\sqrt{2}\))
⇔tana+tanb=tan(\(\frac{\pi}{4}\)).(-2+2\(\sqrt{2}\))=-2+2\(\sqrt{2}\)(thỏa)
ta có \(\left\{{}\begin{matrix}tana.tanb=3-2\sqrt{2}\\tana+tanb=-2+2\sqrt{2}\end{matrix}\right.\)
áp đụng hệ thức Vi-et đảo ta có: tana và tanb là hai nghiệm của phương trình: X2+(2-2\(\sqrt{2}\))X+3-2\(\sqrt{2}\)=0
bấm máy giải phương trình trên ta được 2 nghiệm x1,x2
Vậy (tana;tanb)=(x1;x2) hoặc (x2;x1) và tana.tanb=3-2\(\sqrt{2}\)
tan a = 3 => sina / cos a = 3
P = \(\frac{2sina+3cosa}{4sina-5cosa}=\frac{2.\frac{sina}{cosa}+3}{4.\frac{sina}{cosa}-5}\)\(=\frac{2tana+3}{4tana-5}=\frac{2.3+3}{4.3-5}=\frac{9}{7}\)
#mã mã#