Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1
a) \(M=\sin^242^o+\sin^243^o+\sin^244^o+\sin^245^o+\sin^246^o+\sin^247^o+\sin^248^o\)
\(M=\cos^248^o+\cos^247^o+\cos^246^o+\sin^245^o+\sin^246^o+\sin^247^o+\sin^248^o\)
\(M=\left(\sin^248^o+\cos^248^o\right)+\left(\sin^247^o+\cos^247^o\right)+\left(\sin^246^o+\cos^246^o\right)+\sin^245^o\)
\(M=1+1+1+0,5\)
\(M=3,5\)
bài 1
b) \(N=\cos^215^o-\cos^225^o+\cos^235^o-\cos^245^o+\cos^255^o-\cos^265^o+\cos^275^o\)
\(N=\sin^275^o-\sin^265^o+\sin^255^o-\cos^245^o+\cos^255^o-\cos^265^o+\cos^275^o\)
\(N=\left(\sin^275^o+\cos^275^o\right)-\left(\sin^265^o+\cos^265^o\right)+\left(\sin^255^o+\cos^255^o\right)-\cos^245^o\)
\(N=1-1+1-0,5\)
\(N=0,5\)
\(M=\left(\sin^210^0+\sin^280^0\right)+\left(\sin^220^0+\sin^270^0\right)-3\tan39^0\cdot\cot39^0\\ M=\left(\sin^210^0+\cos^210^0\right)+\left(\sin^220^0+\cos^220^0\right)-3\cdot1=1+1-3=-1\)
A=(sin220°+sin270°)+(sin230°+sin260°)
+(sin240°+sin250°)-tan245°
=(sin220°+cos220°)+(sin230°+cos230°)+(sin240°+cos240°)-1
=1+1+1-1=2
a: \(\sin36^0-\cos54^0+\cos60^0\)
\(=\sin36^0-\sin36^0+\dfrac{1}{2}=\dfrac{1}{2}\)
b: \(=\left(\sin^210^0+\sin^280^0\right)+\left(\sin^230^0+\sin^260^0\right)\)
=1+1=2
`sin36^o -cos54^o +cos60^o`
`=cos54^o -cos54^o +cos60^o`
`=cos60^o=1/2`
_____________________________________________
`sin^2 10^o +sin^2 30^o +sin^2 80^o +sin^2 60^o`
`=cos^2 80^o +cos^2 60^o +sin^2 80^o +sin^2 60^o`
`=(cos^2 80^2 +sin^2 80^o )+(cos^2 60^o +sin^2 60^o )`
`=1+1=2`
a: \(=\left(sin^210^0+sin^280^0\right)+\left(sin^220^0+sin^270^0\right)+sin^245^0\)
\(=1+1+\dfrac{1}{2}=\dfrac{5}{2}\)
b: \(=\left(sin^242^0+sin^248^0\right)+\left(sin^243^0+sin^247^0\right)+...+sin^245^0\)
=1+1+1+1/2
=3,5
c: \(=tan35^0\cdot tan55^0\cdot tan40^0\cdot tan50^0\cdot tan45^0=1\)
d: \(=\left(cos^215^0+cos^275^0\right)-\left(cos^225^0+cos^265^0\right)+\left(cos^235^0+cos^255^0\right)-\dfrac{1}{2}\)
=1-1+1-1/2
=1/2
Các góc dưới đây đều là độ:
Sử dụng đẳng thức \(sina=cos\left(90^0-a\right)\) và \(sin^2a+cos^2a=1\):
\(M=sin^242+sin^243+sin^244+sin^245+cos^2\left(90-46\right)+cos^2\left(90-47\right)+cos^2\left(90-48\right)\)
\(=sin^242+sin^243+sin^244+sin^245+cos^244+cos^243+cos^242\)
\(=\left(sin^242+cos^242\right)+\left(sin^243+cos^243\right)+\left(sin^244+cos^244\right)+\left(\dfrac{\sqrt{2}}{2}\right)^2\)
\(=1+1+1+\dfrac{1}{2}=\dfrac{7}{2}\)