Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^5+x+1=\left(x^5+x+1\right)=x\left(x^4+1+\frac{1}{x}\right)\)
b) và c) Tương tự nha
Chả biết đúng hay sai :v tại dùng máy tính tính ra kết quả rồi phân tích ngược lại
a) \(x^5+x+1=x^5+x^4+x^3-x^3-x^2-x+x^2+x+1\)
\(=x^3\left(x^2+x+1\right)+x\left(x^2+x+1\right)-\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^3-x-1\right)\)
b)\(x^4+2002x^2+2001x+2002=x^4+x^3+1-x^3+x^2+x+2002x^2+2002x+1\)
\(=x^2\left(x^2+x+1\right)-x\left(x^2+x+1\right)+2002\left(x^2+x+1\right)\)
\(=\left(x^2-x+2002\right)\left(x^2+x+1\right)\)
c)Tương tự câu a),ta phân tích được:
\(x^{11}+x^7+1=\left(x^2+x+1\right)\left(x^9-x^8+x^6-x^4+x^3-x+1\right)\)
a) 72018 = 72016 . 72 = 74 . 504 . 49 = ................1 . 49 =................9
Chữ số tận cùng của số này là 9.
b) 20172018 = 20172016 . 20172 = 20174 . 504 . ...........................9 = ................1 . ..............9 =................9
Chữ số tận cùng của số này là 9.
Mình mới lớp 7 chưa học đồng dư. Nên đọc lý thuyết có phần không hiểu lắm. Nên có gì sai sót trong sử dụng đồng dư mong bạn thông cảm! Cảm ơn bạn!
Ta có:
\(7^{2018}=7^{2016+2}=7^{4k+2}=2401^k.49\equiv49\left(mod9\right)\Rightarrow7^{2018}\) có tận cùng là 9
\(2017^{2018}=2017^{2016+2}=2017^{4k+2}=2017^{4k}.2017^2\equiv2017^2\left(mod9\right)\Rightarrow2017^{2018}\) có tận cùng là 9
a) \(x^6+1=x^6-\left(-1\right)=\left(x^3\right)^2-\left(-1^3\right)^2=\left(x^3\right)^2-\left(-1\right)\)
\(=\left(x^3-\left(-1\right)\right)\left(x^3+\left(-1\right)\right)=\left(x^3+1\right)\left(x^3-1\right)\)
b) \(x^6-y^6=\left(x^3\right)^2-\left(y^3\right)^2=\left(x^3+y^3\right)\left(x^3-y^3\right)\)
c) \(x^9+1=\left(x^3\right)^3+\left(-1\right)^3\)
\(=\left(x^3+1\right)\left(\left(x^3\right)^2-x^3.1+1^2\right)=\left(x^3+1\right)\left(x^6-x^3+1\right)\)
a) \(x^6+1=\left(x^6-x^4+x^2\right)+\left(x^4-x^2+1\right)\)
\(=x^2\left(x^4-x^2+1\right)+\left(x^4-x^2+1\right)\)
\(=\left(x^2+1\right)\left(x^4-x^2+1\right)\)
b) \(x^6-y^6=\left(x^3\right)^2-\left(y^3\right)^2=\left(x^3-y^3\right)\left(x^3+y^3\right)\)
\(=\left(x-y\right)\left(x^2+xy+y^2\right)\left(x+y\right)\left(x^2-xy+y^2\right)\)
c) \(x^9+1=\left(x^9-x^6+x^3\right)+\left(x^6-x^3+1\right)\)
\(=x^3\left(x^6-x^3+1\right)+\left(x^6-x^3+1\right)\)
\(=\left(x^3+1\right)\left(x^6-x^3+1\right)\)
\(=\left(x+1\right)\left(x^2-x+1\right)\left(x^6-x^3+1\right)\)
\(55^{n+1}-55^n=55^n.55-55^n=55^n\left(55-1\right)=54.55^n=>chiahetcho54\)
\(55^{n+1}-55^n=55^n.55-55^n=55^n\left(55-1\right)=55^n.54⋮54\)
k mk nha
cảm ơn
\(\left(5\cdot\left(x^2-3x+1\right)+x\cdot\left(1-5x\right)\right)-\left(x-2\right)=0\)
\(7-15x=0\)
\(-15x=-7\)
\(x=\frac{7}{15}=0.467\)
\(b,\)câu b dài quá nên mik lười, vậy mik ghi kết quả thôi nhé
\(x=\frac{2}{19}=0.105\)
\(c,\)câu c cũng vậy mik ghi kết quả thôi nhé bn
\(x=-\frac{6}{11}=-0.545\)
\(9x^2 +4y^2=20xy\)
\(\Rightarrow9x^2-20xy+4y^2=0\)
\(\Rightarrow9x^2-18xy-2xy+4y^2=0\)
\(\Rightarrow9x\left(x-2y\right)-2y\left(x-2y\right)=0\)
\(\Rightarrow\left(x-2y\right)\left(9x-2y\right)=0\)
\(\Rightarrow9x=2y\) (vì \(x< 2y\Rightarrow x-2y\ne0\) )
\(\Rightarrow\frac{x}{2}=\frac{y}{9}\)
Đặt \(\frac{x}{2}=\frac{y}{9}=t\Rightarrow x=2t,y=9t\)
Ta có: \(A=\frac{3.2t-2.9t}{3.2t+2.9t}=-\frac{12t}{24t}=-\frac{1}{2}\)
Chúc bạn học tốt.
\(A=2x^2+9y^2-6xy-6x-12y+2004\)
\(A=\left(3y\right)^2-2\cdot3y\cdot2+2^2+2x^2-6x+2000\)
\(A=\left(3y-2\right)^2+2\left(x^2-2\cdot x\cdot\frac{3}{2}+\left(\frac{3}{2}\right)^2\right)+1997,75\)
\(A=\left(3y-2\right)^2+2\left(x-\frac{3}{2}\right)^2+1997,75\)
\(A\ge1997,75\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}3y-2=0\\x-\frac{3}{2}=0\end{cases}\Leftrightarrow\hept{\begin{cases}y=\frac{2}{3}\\x=\frac{3}{2}\end{cases}}}\)
Vậy,.........
Sửa cho Bonking ( bắt đầu dòng 3 )
\(A=\left(3y-2\right)^2+2\left(x^2-2\cdot x\cdot\frac{3}{2}+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2\right)+2000\)
\(A=\left(3y-2\right)^2+2\left[\left(x-\frac{3}{2}\right)^2-\frac{9}{4}\right]+2000\)
\(A=\left(3y-2\right)^2+2\left(x-\frac{3}{2}\right)^2-\frac{9}{2}+2000\)
\(A=\left(3y-2\right)^2+2\left(x-\frac{3}{2}\right)^2+1995,5\)
\(A\ge1995,5\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}3y-2=0\\x-\frac{3}{2}=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=\frac{2}{3}\\x=\frac{3}{2}\end{cases}}\)
Vậy,.........
Chả biết đúng hay sai :v làm thử
\(a)\) Với \(\hept{\begin{cases}x+1\ge0\\x\ge0\\x-1\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge-1\\x\ge0\\x\ge1\end{cases}\Leftrightarrow}x\ge1}\) ta có :
\(\left(x+1\right)^2+x^2+\left(x-1\right)^2=2\)
\(\Leftrightarrow\)\(\left(x+1+x-1\right)^2-2\left(x+1\right)\left(x-1\right)+x^2=2\)
\(\Leftrightarrow\)\(4x^2-2x^2+2+x^2=2\)
\(\Leftrightarrow\)\(3x^2=0\)
\(\Leftrightarrow\)\(x^2=0\)
\(\Leftrightarrow\)\(x=0\) ( không thỏa mãn )
Với \(\hept{\begin{cases}x+1< 0\\x< 0\\x-1< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x< -1\\x< 0\\x< 1\end{cases}\Leftrightarrow}x< -1}\) ta có :
\(\left[-\left(x+1\right)\right]^2+\left(-x\right)^2+\left[-\left(x-1\right)\right]^2=2\)
\(\Leftrightarrow\)\(\left(x+1\right)^2+x^2+\left(x-1\right)^2=2\)
Đến đây giải giống như trên nha bạn
\(\Leftrightarrow\)\(x=0\) ( không thỏa mãn )
Vậy không có giá trị x thỏa mãn đề bài
Chúc bạn học tốt ~
Bực olm quá! Không cho người ta giải gì hết,cứ giải cần hết bài thì bị bắt tải lại. Nãy giờ hơn 15 lần rồi! Lần nãy nữa không giải nữa đâu nhé olm!!!!! Bực vl!Admin fix nhanh cho em cái! Mấy lần rồi bực quá nên giờ không biết giải còn đúng hay không :v
\(\left(x-5\right)\left(x+5\right)-\left(x+3\right)^2+3\left(x-2\right)^2=\left(x+1\right)^2-\left(x+4\right)\left(x-4\right)+3x^2\)
\(\Leftrightarrow\left(x^2-5^2\right)-\left(x^2+2.3x+3^2\right)+3\left(x^2-2.2x+2^2\right)=\left(x^2+2x+1\right)-\left(x^2-4^2\right)+3x^2\)
\(\Leftrightarrow x^2-25-x^2-6x-9+3x^2-12x+4=x^2+2x+1-x^2+16+3x^2\)
\(\Leftrightarrow\left(x^2-x^2+3x^2\right)-\left(25+9-4\right)-\left(6x+12x\right)=\left(x^2-x^2+3x^2\right)+2x+\left(1+16\right)\)
\(\Leftrightarrow3x^2-30-18x=3x^2+2x+17\)
\(\Leftrightarrow3x^2-3x^2-18x-2x=30+17\)
\(\Leftrightarrow-20x=47\Leftrightarrow x=\frac{-47}{20}\)
a 2222244444.2222266666=493841975160403704
b 162849327^2=26519903304352929
tk cho mk nha
\(a,2222244444\cdot2222266666=49384197516043704.\)
\(b,162849327\cdot2=26519903304352929.\)
Học tốt nhé bn.