Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi các cạnh của tam giác lần lượt là a,b,c ( mm )
Theo đề bài : \(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}\)và a + b + c = 45
Theo tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}=\frac{a+b+c}{3+5+7}=\frac{45}{15}=3\)
\(\Rightarrow\)a = 9 ; b = 15 ; c = 21
Vậy các cạnh của tam giác đó là 9 ; 15 ; 21
gọi độ dài ba cạnh tam giác lần lượt là a,b,c
=> a : b : c = 3 : 5 : 7
=> a/3 = b/5 = c/7
Và a + b + c = 45mm
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}=\frac{a+b+c}{3+5+7}=\frac{45}{15}=3\)
=> a = 3.3 = 9
b = 3.5 = 15
c = 3.7 = 21
Vậy độ dài ba cạnh tam giác đó lần lượt là: 9mm, 15mm, 21mm
Answer:
Ta gọi chiều cao của ba cạnh là: x, y, z (x, y, z > 0)
Vì chiều cao tỉ lệ nghịch với \(\frac{1}{3};\frac{1}{4};\frac{1}{5}\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\) và \(x+y+z=70,5\)
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{x+y+z}{3+4+5}=\frac{70,5}{12}=\frac{47}{8}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{141}{8}\\y=\frac{47}{2}\\z=\frac{235}{8}\end{cases}}\)
Xét tam giác ABC có các đường trung tuyến AM,BD,CE
Gọi G là trọng tâm
*) Chứng minh: AM + BD + CE < AB + BC + CA
+) Trên tia đối của tia MA lấy K sao cho MA = MK
Khi đó, dễ dàng => tam giác BMK = CMA (c - g - c) => BK = AC
+) Xét tam giác ABK có: AK < AB +BK mà AK = 2.AM ; BK = AC
=> 2.AM < AB + AC (1)
Tương tự, ta có: 2.BD < AB + BC (2)
2.CE < AC + BC (3)
Cộng từng vế của (1)(2)(3) => 2.(AM + BD + CE) < 2. (AB + BC + CA)
=> AM + BD + CE < AB + BC + CA
*) Chứng minh: 3/4 (AB + BC + CA) < AM + BD + CE
+) Xét tam giác AGB có: AG + GB > AB
mà AG = 2/3 .AM ; BG = 2/3 .BD (do G là trong tâm tam giác ABC)
=> 2/3 .(AM + BD) > AB
+) Tương tự, ta có: 2/3 (AM + CE) > AC; 2/3 (BD + CE) > BC
=> 2/3 .2. (AM + BD + CE) > AB + BC + CA
<=> 4/3 (AM + BD + CE) > AB + BC + CA
=> AM + BD + CE > 3/4 (AB + BC + CA)
=> ĐPCM
Dạng này hình như lớp 8 mà bạn
bạn zô đây cô loan chỉ tường tận luôn nè http://olm.vn/hoi-dap/question/94245.html
Gọi cạnh thứ 1,2,3 lần lượt là a,b,c
Ta có:\(\frac{a}{1}=\frac{b}{2},3b=4c\) và a+b+c=36
\(\Rightarrow\frac{a}{1}=\frac{b}{2},\frac{b}{4}=\frac{c}{3}\Rightarrow\frac{a}{2}=\frac{b}{4},\frac{b}{4}=\frac{c}{3}\Rightarrow\frac{a}{2}=\frac{b}{4}=\frac{c}{3}\)
\(\Rightarrow\frac{a}{2}=\frac{b}{4}=\frac{c}{3}=\frac{a+b+c}{2+4+3}=\frac{36}{9}=4\)(T/C...)
\(\Rightarrow a=4\cdot2=8,b=4\cdot4=16,c=4\cdot3=12\)
Vậy độ dài cạnh thứ 1,2,3 lần lượt là:8m,16m,12m