K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 10 2017

+ Hình lập phương là hình hộp chữ nhật với a = b = c.

Áp dụng kết quả bài 7b) ta có:

Độ dài đường chéo hình lập phương là:

Giải bài 8 trang 114 sgk Hình học 11 | Để học tốt Toán 11

ΔABC vuông tại B

=>\(AC=\sqrt{AB^2+BC^2}=a\sqrt{2}\)

ΔA'AC vuông tại A

=>\(A'C=\sqrt{A'A^2+AC^2}=a\sqrt{3}\)

=>Độ dài đường chéo là \(a\sqrt{3}\)

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

loading...

a) Xét tam giác ABC vuông tại B có

\(A{C^2} = A{B^2} + B{C^2} = {a^2} + {a^2} = 2{a^2} \Rightarrow AC = a\sqrt 2 \)

Xét tam giác AA’C vuông tại A có

\(A'{C^2} = A{A'^2} + A{C^2} = {a^2} + {\left( {a\sqrt 2 } \right)^2} = 3{a^2} \Rightarrow A'C = a\sqrt 3 \)

Vậy độ dài đường chéo hình lập phương bằng \(a\sqrt 3 \)

b) Ta có \(\begin{array}{l}BD \bot AC,BD \bot AA' \Rightarrow BD \bot \left( {ACC'A'} \right);BD \subset \left( {BDD'B'} \right)\\ \Rightarrow \left( {ACC'A'} \right) \bot \left( {BDD'B'} \right)\end{array}\)

c) Ta có \(C'O \bot BD\left( {BD \bot \left( {ACC'A'} \right)} \right),CO \bot BD \Rightarrow \left[ {C,BD,C'} \right] = \left( {CO,C'O} \right) = \widehat {COC'}\)

\(OC = \frac{{AC}}{2} = \frac{{a\sqrt 2 }}{2}\)

Xét tam giác COC’ vuông tại C có

\(\tan \widehat {COC'} = \frac{{CC'}}{{OC}} = \frac{a}{{\frac{{a\sqrt 2 }}{2}}} = \sqrt 2  \Rightarrow \widehat {COC'} = \arctan \sqrt 2 \)

Ta có \(C'O \bot BD\left( {BD \bot \left( {ACC'A'} \right)} \right),AO \bot BD \Rightarrow \left[ {A,BD,C'} \right] = \left( {AO,C'O} \right) = \widehat {AOC'}\)

\(\widehat {AOC'} = {180^0} - \widehat {COC'} \approx 125,{26^0}\)

26 tháng 10 2018

Đáp án A

6 tháng 11 2017

8 tháng 2 2018

25 tháng 1 2017

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) Ta có AB = AD = AA′ = a

và C ′ B   =   C ′ D   =   C ′ A ′   =   a 2

Vì hai điểm A và C’ cách đều ba đỉnh của tam giác A’BD nên A và C’ thuộc trục đường tròn ngoại tiếp tam giác BDA’ . Vậy AC′ ⊥ (BDA′). Mặt khác vì mặt phẳng (ACC’A’) chứa đường thẳng AC’ mà AC′ ⊥ (BDA′) nên ta suy ra mặt phẳng (ACC’A’) vuông góc với mặt phẳng (BDA’)

b) Ta có ACC’ là tam giác vuông có cạnh A C   =   a 2 và CC’ = a

 

Vậy A C ′ 2   =   A C 2   +   C C ′ 2  

⇒   A C ′ 2   =   2 a 2   +   a 2   =   3 a 2 .   V ậ y   A C ′   =   a 3 .

13 tháng 5 2019

Đáp án C

(Dễ dàng chứng minh định lý: trong hình bình hành, tổng bình phương 2 đường chéo bằng tổng bình phương các cạnh bằng định lý hàm cos)

Ta có:  A C ' 2 = A A ' 2 + A ' C ' 2

=  A A ' 2 + A ' D ' 2 + A ' B ' 2

= 50

Tương tự BD’=AC’=DB’=CA’=50

26 tháng 5 2017

Vectơ trong không gian, Quan hệ vuông góc

b) Ta có ACC' là tam giác vuông có cạnh \(AC=a\sqrt{2},CC'=a\)

Vậy \(AC'^2=AC^2+CC^2\Rightarrow AC'^2=2a^2+a^2=3a^2\)

Vậy \(AC'=a\sqrt{3}\)