Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+ Hình lập phương là hình hộp chữ nhật với a = b = c.
Áp dụng kết quả bài 7b) ta có:
Độ dài đường chéo hình lập phương là:
ΔABC vuông tại B
=>\(AC=\sqrt{AB^2+BC^2}=a\sqrt{2}\)
ΔA'AC vuông tại A
=>\(A'C=\sqrt{A'A^2+AC^2}=a\sqrt{3}\)
=>Độ dài đường chéo là \(a\sqrt{3}\)
a) Xét tam giác ABC vuông tại B có
\(A{C^2} = A{B^2} + B{C^2} = {a^2} + {a^2} = 2{a^2} \Rightarrow AC = a\sqrt 2 \)
Xét tam giác AA’C vuông tại A có
\(A'{C^2} = A{A'^2} + A{C^2} = {a^2} + {\left( {a\sqrt 2 } \right)^2} = 3{a^2} \Rightarrow A'C = a\sqrt 3 \)
Vậy độ dài đường chéo hình lập phương bằng \(a\sqrt 3 \)
b) Ta có \(\begin{array}{l}BD \bot AC,BD \bot AA' \Rightarrow BD \bot \left( {ACC'A'} \right);BD \subset \left( {BDD'B'} \right)\\ \Rightarrow \left( {ACC'A'} \right) \bot \left( {BDD'B'} \right)\end{array}\)
c) Ta có \(C'O \bot BD\left( {BD \bot \left( {ACC'A'} \right)} \right),CO \bot BD \Rightarrow \left[ {C,BD,C'} \right] = \left( {CO,C'O} \right) = \widehat {COC'}\)
\(OC = \frac{{AC}}{2} = \frac{{a\sqrt 2 }}{2}\)
Xét tam giác COC’ vuông tại C có
\(\tan \widehat {COC'} = \frac{{CC'}}{{OC}} = \frac{a}{{\frac{{a\sqrt 2 }}{2}}} = \sqrt 2 \Rightarrow \widehat {COC'} = \arctan \sqrt 2 \)
Ta có \(C'O \bot BD\left( {BD \bot \left( {ACC'A'} \right)} \right),AO \bot BD \Rightarrow \left[ {A,BD,C'} \right] = \left( {AO,C'O} \right) = \widehat {AOC'}\)
\(\widehat {AOC'} = {180^0} - \widehat {COC'} \approx 125,{26^0}\)
a) Ta có AB = AD = AA′ = a
và C ′ B = C ′ D = C ′ A ′ = a 2
Vì hai điểm A và C’ cách đều ba đỉnh của tam giác A’BD nên A và C’ thuộc trục đường tròn ngoại tiếp tam giác BDA’ . Vậy AC′ ⊥ (BDA′). Mặt khác vì mặt phẳng (ACC’A’) chứa đường thẳng AC’ mà AC′ ⊥ (BDA′) nên ta suy ra mặt phẳng (ACC’A’) vuông góc với mặt phẳng (BDA’)
b) Ta có ACC’ là tam giác vuông có cạnh A C = a 2 và CC’ = a
Vậy A C ′ 2 = A C 2 + C C ′ 2
⇒ A C ′ 2 = 2 a 2 + a 2 = 3 a 2 . V ậ y A C ′ = a 3 .
Đáp án C
(Dễ dàng chứng minh định lý: trong hình bình hành, tổng bình phương 2 đường chéo bằng tổng bình phương các cạnh bằng định lý hàm cos)
Ta có: A C ' 2 = A A ' 2 + A ' C ' 2
= A A ' 2 + A ' D ' 2 + A ' B ' 2
= 50
Tương tự BD’=AC’=DB’=CA’=50
b) Ta có ACC' là tam giác vuông có cạnh \(AC=a\sqrt{2},CC'=a\)
Vậy \(AC'^2=AC^2+CC^2\Rightarrow AC'^2=2a^2+a^2=3a^2\)
Vậy \(AC'=a\sqrt{3}\)