K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2018

Kẻ BE vuông góc với DC 

Ta có : ABCD là hình thang vuông 

=> AB // DC ( hình thang có 1 cặp cạnh đối song song )

=> góc B1 + góc E2 = 180( 2 góc trong cùng phía của AB//DC ) 

     gócB1 = 180O - gócE2 = 180o - 90o = 90

Ta có : gócB = góc B1 + gócB2 ( tia BE nằm giữa 2 tia BA và BC )

=> gócB2 = gócB - gócB1 = 135O - 90O = 45

Ta có : gócB2 + gócE1 + gócC = 180O ( TỔNG 3 GÓC TRONG TAM GIÁC )

=> C = 180o - ( B2 + E1 ) = 180o - ( 45o + 90o ) = 45o

Do đó : tam giác BEC cân tại E ( góc C = góc B2 = 45o ( số đo 2 góc ở đáy bằng nhau ) )

=> EB = EC = 4cm ( 2 cạnh bên của tam giác cân ) 

Ta có : \(S_{\Delta BEC}=\frac{EB.EC}{2}=\frac{4.4}{2}=8\left(cm^2\right)\)

Ta có : \(S_{ABED}=AB.AD=3.4=12\left(cm^2\right)\)

Ta có : \(S_{ABCD}=S_{\Delta BEC}+S_{ABED}=8+12=20\left(cm^2\right)\)

Vậy diện tích ABCD là 20 cm2 

21 tháng 5 2018

Xét tam giác ABD và tam giác BDC có:

\(\widehat{BAD}=\widehat{DBC}=90^o\)

\(\widehat{ABD}=\widehat{BDC}\)   (Cùng phụ với góc \(\widehat{ADC}\)  )

\(\Rightarrow\Delta ABD\sim\Delta BDC\left(g-g\right)\Rightarrow\frac{AB}{BD}=\frac{BD}{DC}\Rightarrow BD^2=\frac{AB}{DC}\)

Xét tam giác vuông ABD, áp dụng định lý Pi-ta-go ta có:

      \(DB^2=AB^2+AD^2=2^2+4^2=20\)

Suy ra \(2=\frac{20}{DC}\Rightarrow DC=10cm\)

Xét tam giác vuông BDC, áp dụng định lý Pi-ta-go ta có:

  \(BC^2=DC^2-BD^2=10^2-20=80\Rightarrow BC=\sqrt{80}\left(cm\right)\)

Vậy chu vi hình thang vuông bằng:    2 + 4 + 10 + \(\sqrt{80}=14+\sqrt{80}\left(cm\right)\)

Diện tích hình thang bằng: \(\frac{\left(2+10\right).4}{2}=24\left(cm^2\right)\)

21 tháng 5 2018

20cm2

4 tháng 3 2022

a) -Qua B kẻ đường thẳng vuông góc với DC tại E.

-Xét tứ giác ABED: \(\widehat{ADE}=\widehat{BAD}=\widehat{DEB}=90^0\)

\(\Rightarrow\)ABED là hình chữ nhật nên \(AD=BE\)\(AB=ED=4\left(cm\right)\)

-Xét △BEC vuông tại E:

\(BE^2+EC^2=BC^2\) (định lí Py-ta-go)

\(\Rightarrow BE^2+\left(DC-DE\right)^2=BC^2\)

\(\Rightarrow BE^2+\left(9-4\right)^2=13^2\)

\(\Rightarrow BE^2=13^2-5^2=144\)

\(\Rightarrow BE=AD=12\left(cm\right)\)

b) \(S_{ABCD}=\dfrac{AD.\left(AB+CD\right)}{2}=\dfrac{12.\left(4+9\right)}{2}=78\left(cm^2\right)\)

c) -Đề sai.