Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét hình thang vuông ABCD có: ˆA=ˆD=900;ˆC=450A^=D^=900;C^=450
Kẻ BE ⊥ CD
Trong tam giác vuông BEC có ˆBEC=900BEC^=900
ˆC=45∘⇒C^=45∘⇒∆ BEC vuông cân tại E
⇒ BE = EC
Hình thang ABED có hai cạnh bên AD // BE (vì cùng vuông góc với DC)
⇒ DE = AB = 2cm
EC = DC – DE = 4 – 2 = 2 (cm) ⇒ BE = 2cm
SABCD=1/2.BE(AB+CD)=1/2.2.(2+4)=6(cm2)
Giả sử hình thang vuông ABCD có:
∠ A = ∠ D = 90 0 ; ∠ C = 45 0
Kẻ BE ⊥ CD
Tam giác vuông BEC có ∠ (BEC) = 90 0 cân tại E ⇒ BE = EC
Hình thang ABCD có hai cạnh bên AD // BE (vì cùng vuông góc với DC) ⇒ DE = AB = 2cm
EC = DC – DE = 4 – 2 = 2 (cm) ⇒ BE = 2cm ( vì tam giác BEC là tam giác vuông cân).
SABCD = 1/2 .BE(AB+ CD) = 1/2 .2.(2 + 4) = 6 ( c m 2 )
Hạ đường cao CE thì EB = AB - AE = AB - DC = 4 - 2 =2.
Tam giác vuông EBC có góc B = 45 độ nên nó là tam giác vuông cân. Suy ra CE = EB = 2.
\(dt\left(ABCD\right)=\dfrac{AB+CD}{2}.CE=\dfrac{4+2}{2}.2=6\left(cm^2\right)\)
1/
Kẻ AH \(\perp\)CD , \(BK\perp CD\)
Xét tam giác vuông AHD và tam giác vuông BKC, có: góc ADH = góc BCK = 600 ; cạnh AH = BK
=> tam giác AHD = tam giác BKC (gcg)
=> DH = KC
Đặt a = DH (a > 0) => AH = \(\sqrt{1-x^2}\)
Có: Sin60 = \(\frac{AH}{AD}\Rightarrow\frac{\sqrt{3}}{2}=\sqrt{1-x^2}\Rightarrow1-x^2=\frac{3}{4}\Rightarrow x^2=\frac{1}{4}\Rightarrow\left[\begin{array}{nghiempt}x=\frac{1}{2}\left(n\right)\\x=-\frac{1}{2}\left(l\right)\end{array}\right.\)
=> x = 1/2 hay DH = KC = 1/2
Mặt khác: HK = CD - (DH + KC) = 2,7 - (1/2 + 1/2) = 1,7 (m)
Tứ giác ABCD là hình chữ nhật (góc AHK = góc BKH = ABK = 900) => AB = HK = 1,7 (m)
Vậy AB = 1,7m
2/
a/ Cm: tam giác ICD đều:
Trong tam giác ICD : DB vừa là đường phân giác , vừa là đường cao => tam giác ICD là tam giác cân tại D
=> ID = DC (1)
=> DB vừa là đường trung tuyến => BI = BC = 4cm => IC = 4 + 4 = 8cm (2)
Có: góc IAB = IDC (đồng vị) , góc IBA = góc ICD (đồng vị)
mà góc IDC = góc ICD
=> góc IAB = góc IBA => tam giác IAB cân tại I => IA = IB = 4cm
=> ID = IA + AD = 4 + 4 = 8cm (3)
Từ (1), (2), (3) => ID = DC = IC = 8cm hay tam giác IDC đều
b/ Tính chu vi hình thang ABCD:
Vì tam giác ICD đều => tam giác IAB đều => IA = AB = 4cm
ID = DC = 8cm
Vậy chu vi hình thang ABCD : AB + AD + BC + CD = 4 + 4 + 4 + 8 = 20(cm)
Gọi hình thang với các số liệu nêu trên là hình thang ABCD, trong dó AB là đáy nhỏ, BC là đáy lớn (AB//CD). Giả sử cạnh bên có độ dài =8 cm là cạnh AD, góc ADC=300.
- Kẻ AH vuông góc với CD (H thuộc CD).
=>góc ADH = góc ADC=300
Xét tam giác AHD vuông tại H (do AH vuông góc với CD)
có: sinADH=\(\dfrac{AH}{AD}\)
=>AH=sinADH.AD=sin(30).AD=\(\dfrac{1}{2}\).8=4(cm)
Diện tích hình thang ABCD là:
SABCD=\(\dfrac{1}{2}\).(7+9).4=32 cm2
Gọi hình thang với các số liệu nêu trên là hình thang ABCD, trong dó AB là đáy nhỏ, BC là đáy lớn (AB//CD). Giả sử cạnh bên có độ dài =8 cm là cạnh AD, góc ADC=300.
- Kẻ AH vuông góc với CD (H thuộc CD).
=>góc ADH = góc ADC=300
Xét tam giác AHD vuông tại H (do AH vuông góc với CD)
có: sinADH=\(\dfrac{AH}{AD}\)
=>AH=sinADH.AD=sin(30).AD=\(\dfrac{1}{2}\).8=4(cm)
Diện tích hình thang ABCD là:
SABCD=\(\dfrac{1}{2}.\left(7+9\right).4\)=32 cm2
https://hoc24.vn/hoi-dap/tim-kiem?id=178370&q=M%E1%BB%99t%20h%C3%ACnh%20thang%20c%C3%A2n%20c%C3%B3%20%C4%91%C3%A1y%20l%E1%BB%9Bn%20d%C3%A0i%202%2C7cm%2C%20c%E1%BA%A1nh%20b%C3%AAn%20d%C3%A0i%201m%2C%20g%C3%B3c%20t%E1%BA%A1o%20b%E1%BB%9Fi%20%C4%91%C3%A1y%20l%E1%BB%9Bn%20v%C3%A0%20c%E1%BA%A1nh%20b%C3%AAn%20c%C3%B3%20s%E1%BB%91%20%C4%91o%20b%E1%BA%B1ng%20600.%20T%C3%ADnh%20%C4%91%E1%BB%99%20d%C3%A0i%20c%E1%BB%A7a%20%C4%91%C3%A1y%20nh%E1%BB%8F
Kẻ AH ⊥CD , BK⊥CD
Xét tam giác vuông AHD và tam giác vuông BKC, có: góc ADH = góc BCK = 600 ; cạnh AH = BK
=> tam giác AHD = tam giác BKC (gcg)
=> DH = KC
Đặt a = DH (a > 0) => AH = √1−x2
Có: Sin60 = AH/AD ➝√3/2 -√1−x2 ➝1−x2=3/4➝x2=1/4➝[x=12(n)
x=−12(l)
=> x = 1/2 hay DH = KC = 1/2
Mặt khác: HK = CD - (DH + KC) = 2,7 - (1/2 + 1/2) = 1,7 (m)
Tứ giác ABCD là hình chữ nhật (góc AHK = góc BKH = ABK = 900) => AB = HK = 1,7 (m)
Vậy AB = 1,7m
Kẻ \(BH\perp CD\)
Mà \(CD\perp AD\left(gt\right)\Rightarrow BH//AD\)
Hình thang ABHD (AB//HD) có BH//AD nên \(\hept{\begin{cases}HD=AB=5\left(cm\right)\\BH=AD\end{cases}}\) (t/c hình thang)
\(HD+HC=DC\Rightarrow5+HC=9\Rightarrow HC=4\left(cm\right)\)
\(\Delta HBC\)vuông cân tại H nên \(HB=HC=4cm\Rightarrow AD=4cm\left(AD=BH\right)\)
Áp dụng định lí Pitago tính được \(BC=\sqrt{32}\left(cm\right)\)
Chu vi hình thang vuông ABCD là:
\(AB+BC+CD+AD=5+\sqrt{32}+9+4=18+\sqrt{32}\left(cm\right)\)
Chúc bạn học tốt.
Bài này có 2 cách nhưng mình chỉ giải 1 cách thôi,không biết có đúng không nhé!(Cho phép mình đặt tên các đỉnh)
Kẻ BE//AD =>Tam giác BEC là tam giác vuông.Vì góc BCE = 45 độ
=> Góc CBE= 45 độ =>Tam giác BEC vuông cân.=> BE=EC=DC-DE=9-6=3.
Diện tích của hình thang là:(a+b)*h:2=(AB+CD)*BE:2=(6+9)*3:2=45:2=22.5(cm vuông)
vẽ hình cho mk đk k