Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa lại đề nha: x+y+z=0
a)
Xét x+y+z=0
(x+y+z)2=02
x2+y2+z2+2xy+2yz+2zx=0
=> x2+y2+z2=-2xy-2yz-2zx
Xét \(\dfrac{x^2+y^2+z^2}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}\)
= \(\dfrac{x^2+y^2+z^2}{\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2zx+x^2\right)}\)
=\(\dfrac{x^2+y^2+z^2}{x^2-2xy+y^2+y^2-2yz+z^2+z^2-2zx+x^2}\)
=\(\dfrac{x^2+y^2+z^2}{2x^2+2y^2+2z^2-2xy-2yz-2zx}\)(1)
Thay x2+y2+z2=-2xy-2yz-2zx vào (1)
=>\(\dfrac{x^2+y^2+z^2}{2x^2+2y^2+2z^2+x^2+y^2+z^2}\\=\dfrac{x^2+y^2+z^2}{3x^2+3y^2+3z^2}\\ =\dfrac{x^2+y^2+z^2}{3\left(x^2+y^2+z^2\right)}\\ =\dfrac{1}{3}\)
b)
Xét x+y+z=0 ba lần:
- Lần 1:x+y+z=0
<=> x+y=0-z
<=>(x+y)2=(0-z)2
<=>x2+2xy+y2=z2
<=>x2+y2-z2=-2xy(1)
-Lần 2: x+y+z=0
<=> y+z=0-x
<=>(y+z)2=(0-x)2
<=>y2+2yz+z2=x2
<=>y2+z2-x2=-2yz(2)
-Lần 3: x+y+z=0
<=>z+x=0-y
<=>(z+x)2=(0-y)2
<=>z2+2zx+x2=y2
<=> z2+x2-y2=-2zx(3)
Thay (1),(2),(3) vào Q, ta có:
=>\(\dfrac{\left(x^2+y^2-z^2\right)\left(y^2+z^2-x^2\right)\left(z^2+x^2-y^2\right)}{16xyz}=\dfrac{\left(-2xy\right)\left(-2yz\right)\left(-2zx\right)}{16xyz}\\=\dfrac{\left(-2yz\right)\left(-2zx\right)}{-8z}\\ =\dfrac{y\left(-2zx\right)}{4}\\ =\dfrac{-2xyz}{4}\\ =-\dfrac{xyz}{2}\)
1, đa thức đã cho \(\Leftrightarrow\left(2x-y\right)^2-2\left(2x-y\right)\left(x-y\right)+\left(x-y\right)^2=\left[\left(2x-y\right)-\left(x-y\right)\right]^2=\left(2x-y-x+y\right)^2=x^2\)
2, đa thức đã cho \(\Leftrightarrow\left(x-y+z\right)^2+2\left(x-y+z\right)\left(y-z\right)+\left(y-z\right)^2=\left[\left(x-y+z\right)+\left(y-z\right)\right]^2=\left(x-y+z+y-z\right)^2=x^2\)
--- giải chi tiết lắm rồi đó---
a, \(\left(2x-y\right)^2+2\left(2x-y\right)\left(y-x\right)+\left(x-y\right)^2\)
\(=4x^2-4xy+y^2+2\left(2xy-2x^2-y^2+xy\right)+x^2-2xy+y^2\)
\(=4x^2-4xy+y^2+4xy-4x^2-2y^2+2xy+x^2-2xy+y^2\)
\(=x^2\)
b, \(\left(x-y+z\right)^2+2\left(x-y+z\right)\left(y-z\right)+\left(y-z\right)^2\)
\(=\left(x-y+z\right)\left[1+2\left(y-z\right)\right]+y^2-2yz+z^2\)
\(=\left(x-y+z\right)\left(1+2y-2z\right)+y^2-2yz+z^2\)
\(=x+2xy-2xz-y-2y^2+2yz+z+2yz-2z^2+y^2-2yz+z^2\)
\(=x-y+z+2xy-2xz+2yz-y^2-z^2\)
Chúc bạn học tốt!!!
\(S=\frac{yz\left(x+1\right)\left(y-z\right)-zx\left(y+1\right)\left(x-z\right)+xy\left(z+1\right)\left(x-y\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)
+ \(yz\left(x+1\right)\left(y-z\right)-zx\left(y+1\right)\left(x-z\right)+xy\left(z+1\right)\left(x-y\right)\)
\(=yz\left(x+1\right)\left(y-z\right)-zx\left(y+1\right)\left[\left(y-z\right)+\left(x-y\right)\right]\)
\(+xy\left(z+1\right)\left(x-y\right)\)
\(=\left(y-z\right)\left[yz\left(x+1\right)-zx\left(y+1\right)\right]+\left(x-y\right)\left[xy\left(z+1\right)-zx\left(y+1\right)\right]\)
\(=\left(y-z\right)\left[z\left(y-x\right)\right]+\left(x-y\right)\cdot x\cdot\left(y-z\right)\)
\(=\left(x-y\right)\left(y-z\right)\left(x-z\right)\)
\(\Rightarrow S=\frac{1}{xyz}\)
Áp dụng BĐT cauchy ta có:\(\left\{{}\begin{matrix}x^2+y^2\ge2xy\\y^2+z^2\ge2yz\\x^2+z^2\ge2xz\end{matrix}\right.\)
\(P\le\dfrac{1}{4xy+4x+4}+\dfrac{1}{4yz+4y+4}+\dfrac{1}{4xz+4z+4}=\dfrac{1}{4}\left(\dfrac{1}{xy+x+1}+\dfrac{1}{yz+y+1}+\dfrac{1}{xz+x+1}\right)\)
xét biểu thức \(\dfrac{1}{xy+x+1}+\dfrac{1}{yz+y+1}+\dfrac{1}{zx+z+1}=\dfrac{1}{xy+x+1}+\dfrac{x}{1+yx+x}+\dfrac{xy}{x+1+xy}=\dfrac{xy+x+1}{xy+x+1}=1\)do đó \(P\le\dfrac{1}{4}\)
dấu = xảy ra khi x=y=z=1
Trước tiên ta tính:
\(\dfrac{1}{x+xy+1}+\dfrac{1}{y+yz+1}+\dfrac{1}{z+zx+1}\)
Đặt: \(\left\{{}\begin{matrix}x=\dfrac{a}{b}\\y=\dfrac{b}{c}\\z=\dfrac{c}{a}\end{matrix}\right.\left(a,b,c\ne0\right)\)
Thì ta có: \(\dfrac{1}{\dfrac{a}{b}+\dfrac{a}{b}.\dfrac{b}{c}+1}+\dfrac{1}{\dfrac{b}{c}+\dfrac{b}{c}.\dfrac{c}{a}+1}+\dfrac{1}{\dfrac{c}{a}+\dfrac{c}{a}.\dfrac{a}{b}+1}\)
\(=\dfrac{bc}{ab+ac+bc}+\dfrac{ca}{ab+bc+ca}+\dfrac{ab}{ab+bc+ca}=1\)
Quay về bài toán ban đầu. Ta có:
\(P=\dfrac{1}{\left(x+2\right)^2+y^2+2xy}+\dfrac{1}{\left(y+2\right)^2+z^2+2yz}+\dfrac{1}{\left(z+2\right)^2+x^2+2xz}\)
\(=\dfrac{1}{x^2+4x+4+y^2+2xy}+\dfrac{1}{y^2+4y+4+z^2+2yz}+\dfrac{1}{z^2+4z+4+z^2+2xz}\)
\(=\dfrac{1}{\left(x-y\right)^2+4x+4xy+4}+\dfrac{1}{\left(y-z\right)^2+4y+4yz+4}+\dfrac{1}{\left(z-x\right)^2+4z+4zx+4}\)
\(\le\dfrac{1}{4x+4xy+4}+\dfrac{1}{4y+4yz+4}+\dfrac{1}{4z+4zx+4}\)
\(=\dfrac{1}{4}.\left(\dfrac{1}{x+xy+1}+\dfrac{1}{y+yz+1}+\dfrac{1}{z+zx+1}\right)=\dfrac{1}{4}\)
d)
\(\dfrac{1}{x\left(x+1\right)}+\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}+.....+\dfrac{1}{\left(x+99\right)\left(x+100\right)}\)=\(\dfrac{1}{x}-\dfrac{1}{x+1}+\dfrac{1}{x+1}-\dfrac{1}{x+2}+\dfrac{1}{x+2}-\dfrac{1}{x+3}+.....-\dfrac{1}{x+99}+\dfrac{1}{x+100}\)=\(\dfrac{1}{x}-\dfrac{1}{x+100}\)
=\(\dfrac{x+100}{x\left(x+100\right)}-\dfrac{x}{x\left(x+100\right)}\)
=\(\dfrac{x+100-x}{x\left(x+100\right)}=\dfrac{100}{x\left(x+100\right)}\)
1) \(\left(x-y-z\right)^2-\left(y+z\right)^2=\left(x\right).\left(x-2y-2z\right)=x^2-2yx-2zx\) 2) \(\left(2x+y\right)^2-4x\left(2x+y\right)+4x^2\Leftrightarrow\left(2x+y\right)\left(2x+y-4x\right)+4x^2\)
\(=\left(2x+y\right)\left(y-2x\right)+4x^2=\left(y^2-4x^2\right)+4x^2=y^2-4x^2+4x^2=y^2\)
3) \(\left(x+y\right)^2-2\left(x^2-y^2\right)+\left(x-y\right)^2\)
\(=x^2+2xy+y^2-2x^2+2y^2+x^2-2xy+y^2\)
\(=4y^2=\left(2y\right)^2\)
a: \(=\dfrac{1}{\left(x-y\right)\left(y-z\right)}-\dfrac{1}{\left(y-z\right)\left(x-z\right)}-\dfrac{1}{\left(x-y\right)\left(x-z\right)}\)
\(=\dfrac{x-z-x+y-y+z}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}=0\)
b: \(=\dfrac{1}{x\left(x-y\right)\left(x-z\right)}-\dfrac{1}{y\left(x-y\right)\left(y-z\right)}+\dfrac{1}{z\left(x-z\right)\left(y-z\right)}\)
\(=\dfrac{yz\left(y-z\right)-xz\left(x-z\right)+xy\left(x-y\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)
\(=\dfrac{y^2z-yz^2-x^2z+xz^2+xy\left(x-y\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)
\(=\dfrac{z\left(y^2-x^2\right)-z^2\left(y-x\right)-xy\left(y-x\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)
\(=\dfrac{\left(x-y\right)\left[-z\left(x+y\right)+z^2+xy\right]}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)
\(=\dfrac{-zx-zy+z^2+xy}{xyz\left(y-z\right)\left(x-z\right)}\)
\(=\dfrac{z\left(z-x\right)-y\left(z-x\right)}{xyz\left(y-z\right)\left(x-z\right)}=\dfrac{1}{xyz}\)
a: \(\dfrac{y}{\left(x-y\right)\left(y-z\right)}-\dfrac{z}{\left(y-z\right)\left(x-z\right)}-\dfrac{x}{\left(x-y\right)\left(x-z\right)}\)
\(=\dfrac{xy-yz-xz+yz-xy+xz}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)
=0
c: \(=\dfrac{1}{x\left(x-y\right)\left(x-z\right)}-\dfrac{1}{y\left(y-z\right)\left(x-y\right)}+\dfrac{1}{z\left(x-z\right)\left(y-z\right)}\)
\(=\dfrac{zy\left(y-z\right)-xz\left(x-z\right)+xy\left(x-y\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)
\(=\dfrac{zy^2-z^2y-x^2z+xz^2+xy\left(x-y\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)
\(=\dfrac{1}{xyz}\)