Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
trên tia AC , lấy điểm I sao cho MI \(\perp\)AC
Xét \(\Delta HAM\)và \(\Delta MAI\)có :
AM ( cạnh chung )
\(\widehat{HAM}=\widehat{MAI}\)( gt )
Suy ra : \(\Delta HAM\)= \(\Delta MAI\)( cạnh huyền - góc nhọn )
\(\Rightarrow\)HM = MI
Xét \(\Delta ABH\)và \(\Delta AMH\)có :
\(\widehat{BAH}=\widehat{MAH}\)( gt )
AH ( cạnh chung )
\(\widehat{AHB}=\widehat{AHM}\)( = 90 độ )
\(\Rightarrow\)\(\Delta ABH\)= \(\Delta AMH\)( g.c.g )
\(\Rightarrow\)BH = MH
\(\Rightarrow\)\(BH=MH=MI=\frac{1}{2}BM=\frac{1}{3}CM\)
xét \(\Delta MIC\)vuông tại I có :
\(MI=\frac{1}{3}CM\)nên \(\widehat{C}=30^o\)\(\Rightarrow\widehat{HAC}=60^o\)
Từ đó suy ra : \(\widehat{BAC}=60^o:2.3=90^o\)
\(\Rightarrow\widehat{ABC}=180^o-\left(90^o+30^o\right)=60^o\)
Không mất tính tổng quát, giả sử \(\widehat{B}>\widehat{C}\)khi đó \(H\)nằm giữa \(B\)và \(M\).
Xét tam giác \(ABM\)có \(AH\)vừa là đường cao vừa là đường phân giác nên \(\Delta ABM\)cân tại \(A\).
\(AH\)đồng thời là đường trung tuyến.
Kẻ \(MP\perp AC\).
Dễ dàng chứng minh được \(\Delta AHM=\Delta APM\)(cạnh huyền - góc nhọn)
suy ra \(MP=MH=\frac{1}{2}MB=\frac{1}{2}MC\).
Xét tam giác vuông \(MPC\)có cạnh góc vuông bằng \(\frac{1}{2}\)cạnh huyền nên góc đối diện cạnh góc vuông đó bằng \(30^o\)
do đó \(\widehat{C}=30^o\).
\(\frac{2}{3}\widehat{A}+\widehat{C}=90^o\Leftrightarrow\widehat{A}=\frac{3}{2}\left(90^o-30^o\right)=90^o\).
\(\widehat{B}=180^o-90^o-30^o=60^o\).
Vẽ MK vuông góc AC
Tam giác KAM=TAM GIÁC HAM(CH-GN)
nên MK=MH(2 cạnh tương ứng)
=> \(MK=MH=\frac{BM}{2}=\frac{CM}{2}\)
Tam giác MKC có Mk=1/2 MC NÊN GÓC C=30
Xét tam giác AHC có
HAC+HCA+AHC=180
hay HAC+90+30=180
=>HAC=60
Suy ra BAC=90