K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a)  Ta có \({\cos ^2}\alpha  + {\sin ^2}\alpha \,\,\, = \,1\)

mà \(\sin \alpha  = \frac{{\sqrt {15} }}{4}\) nên \({\cos ^2}\alpha  + {\left( {\frac{{\sqrt {15} }}{4}} \right)^2}\,\,\, = \,1 \Rightarrow {\cos ^2}\alpha  = \frac{1}{{16}}\)

Lại có \(\frac{\pi }{2} < \alpha  < \pi \) nên \(\cos \alpha  < 0 \Rightarrow \cos \alpha  =  - \frac{1}{4}\)

Khi đó \(\tan \alpha  = \frac{{\sin \alpha }}{{co{\mathop{\rm s}\nolimits} \alpha }} =  - \sqrt {15} ;\cot \alpha  = \frac{1}{{\tan \alpha }} =  - \frac{1}{{\sqrt {15} }}\)

b)

Ta có \({\cos ^2}\alpha  + {\sin ^2}\alpha \,\,\, = \,1\)

mà \(\cos \alpha  =  - \frac{2}{3}\) nên \({\sin ^2}\alpha  + {\left( {\frac{{ - 2}}{3}} \right)^2}\,\,\, = \,1 \Rightarrow {\sin ^2}\alpha  = \frac{5}{9}\)

Lại có \( - \pi  < \alpha  < 0\) nên \(\sin \alpha  < 0 \Rightarrow \sin \alpha  =  - \frac{{\sqrt 5 }}{3}\)

Khi đó \(\tan \alpha  = \frac{{\sin \alpha }}{{co{\mathop{\rm s}\nolimits} \alpha }} = \frac{{\sqrt 5 }}{2};\cot \alpha  = \frac{1}{{\tan \alpha }} = \frac{2}{{\sqrt 5 }}\)

c)

Ta có \(\tan \alpha  = 3\) nên

\(\cot \alpha  = \frac{1}{{\tan \alpha }} = \frac{1}{3}\)

\(\frac{1}{{{{\cos }^2}\alpha }} = 1 + {\tan ^2}\alpha \,\,\, = \,1 + {3^2} = 10\,\, \Rightarrow {\cos ^2}\alpha  = \frac{1}{{10}}\)

Mà \({\cos ^2}\alpha  + {\sin ^2}\alpha \,\,\, = \,1 \Rightarrow {\sin ^2}\alpha  = \frac{9}{{10}}\)

Với \( - \pi  < \alpha  < 0\) thì \(\sin \alpha  < 0 \Rightarrow \sin \alpha  =  - \sqrt {\frac{9}{{10}}} \)

Với \( - \pi  < \alpha  <  - \frac{\pi }{2}\) thì \(\cos \alpha  < 0 \Rightarrow \cos \alpha  =  - \sqrt {\frac{1}{{10}}} \)

và  \( - \frac{\pi }{2} \le \alpha  < 0\) thì \(\cos \alpha  > 0 \Rightarrow \cos \alpha  = \sqrt {\frac{1}{{10}}} \)

d)

Ta có \(\cot \alpha  =  - 2\) nên

\(\tan \alpha  = \frac{1}{{\cot \alpha }} =  - \frac{1}{2}\)

\(\frac{1}{{{{\sin }^2}\alpha }} = 1 + co{{\mathop{\rm t}\nolimits} ^2}\alpha \,\,\, = \,1 + {( - 2)^2} = 5\,\, \Rightarrow {\sin ^2}\alpha  = \frac{1}{5}\)

Mà \({\cos ^2}\alpha  + {\sin ^2}\alpha \,\,\, = \,1 \Rightarrow {\cos ^2}\alpha  = \frac{4}{5}\)

Với \(0 < \alpha  < \pi \) thì \(\sin \alpha  > 0 \Rightarrow \sin \alpha  = \sqrt {\frac{1}{5}} \)

Với \(0 < \alpha  < \frac{\pi }{2}\) thì \(\cos \alpha  > 0 \Rightarrow \cos \alpha  = \sqrt {\frac{4}{5}} \)

và  \(\frac{\pi }{2} \le \alpha  < \pi \) thì \(\cos \alpha  < 0 \Rightarrow \cos \alpha  =  - \sqrt {\frac{4}{5}} \)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) Vì \(0<\alpha <\frac{\pi }{2} \) nên \(\sin \alpha  > 0\). Mặt khác, từ \({\sin ^2}\alpha  + {\cos ^2}\alpha  = 1\) suy ra

\(\sin \alpha  = \sqrt {1 - {{\cos }^2}a}  = \sqrt {1 - \frac{1}{{25}}}  = \frac{{2\sqrt 6 }}{5}\)

Do đó, \(\tan \alpha  = \frac{{\sin \alpha }}{{\cos \alpha }} = \frac{{\frac{{2\sqrt 6 }}{5}}}{{\frac{1}{5}}} = 2\sqrt 6 \) và \(\cot \alpha  = \frac{{\cos \alpha }}{{\sin \alpha }} = \frac{{\frac{1}{5}}}{{\frac{{2\sqrt 6 }}{5}}} = \frac{{\sqrt 6 }}{{12}}\)

b) Vì \(\frac{\pi }{2} < \alpha  < \pi\) nên \(\cos \alpha  < 0\). Mặt khác, từ \({\sin ^2}\alpha  + {\cos ^2}\alpha  = 1\) suy ra

       \(\cos \alpha  = \sqrt {1 - {{\sin }^2}a}  = \sqrt {1 - \frac{4}{9}}  = -\frac{{\sqrt 5 }}{3}\)

Do đó, \(\tan \alpha  = \frac{{\sin \alpha }}{{\cos \alpha }} = \frac{{\frac{2}{3}}}{{-\frac{{\sqrt 5 }}{3}}} = -\frac{{2\sqrt 5 }}{5}\) và \(\cot \alpha  = \frac{{\cos \alpha }}{{\sin \alpha }} = \frac{{-\frac{{\sqrt 5 }}{3}}}{{\frac{2}{3}}} = -\frac{{\sqrt 5 }}{2}\)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

c) Ta có: \(\cot \alpha  = \frac{1}{{\tan \alpha }} = \frac{1}{{\sqrt 5 }}\)

Ta có: \({\tan ^2}\alpha  + 1 = \frac{1}{{{{\cos }^2}\alpha }} \Rightarrow {\cos ^2}\alpha  = \frac{1}{{{{\tan }^2}\alpha  + 1}} = \frac{1}{6} \Rightarrow \cos \alpha  =  \pm \frac{1}{{\sqrt 6 }}\)

Vì \(\pi  < \alpha  < \frac{{3\pi }}{2} \Rightarrow \sin \alpha  < 0\;\) và \(\,\,\cos \alpha  < 0 \Rightarrow \cos \alpha  = -\frac{1}{{\sqrt 6 }}\)

Ta có: \(\tan \alpha  = \frac{{\sin \alpha }}{{\cos \alpha }} \Rightarrow \sin \alpha  = \tan \alpha .\cos \alpha  = \sqrt 5 .(-\frac{1}{{\sqrt 6 }}) = -\sqrt {\frac{5}{6}} \)

d) Vì \(\cot \alpha  =  - \frac{1}{{\sqrt 2 }}\;\,\) nên \(\,\,\tan \alpha  = \frac{1}{{\cot \alpha }} =  - \sqrt 2 \)

Ta có: \({\cot ^2}\alpha  + 1 = \frac{1}{{{{\sin }^2}\alpha }} \Rightarrow {\sin ^2}\alpha  = \frac{1}{{{{\cot }^2}\alpha  + 1}} = \frac{2}{3} \Rightarrow \sin \alpha  =  \pm \sqrt {\frac{2}{3}} \)

Vì \(\frac{{3\pi }}{2} < \alpha  < 2\pi  \Rightarrow \sin \alpha  < 0 \Rightarrow \sin \alpha  =  - \sqrt {\frac{2}{3}} \)

Ta có: \(\cot \alpha  = \frac{{\cos \alpha }}{{\sin \alpha }} \Rightarrow \cos \alpha  = \cot \alpha .\sin \alpha  = \left( { - \frac{1}{{\sqrt 2 }}} \right).\left( { - \sqrt {\frac{2}{3}} } \right) = \frac{{\sqrt 3 }}{3}\)

HQ
Hà Quang Minh
Giáo viên
25 tháng 8 2023

HQ
Hà Quang Minh
Giáo viên
25 tháng 8 2023

\(a,sin^2\alpha+cos^2\alpha=1\\ \Rightarrow cos\alpha=\pm\sqrt{1-sin^2\alpha}=\pm\sqrt{1-\left(\dfrac{\sqrt{3}}{3}\right)^2}=\pm\dfrac{\sqrt{6}}{3}\)

Vì \(0< \alpha< \dfrac{\pi}{2}\Rightarrow cos\alpha=\dfrac{\sqrt{6}}{3}\)

\(sin2\alpha=2sin\alpha cos\alpha=2\cdot\dfrac{\sqrt{3}}{3}\cdot\dfrac{\sqrt{6}}{3}=\dfrac{2\sqrt{2}}{3}\\ cos2\alpha=2cos^2\alpha-1=2\cdot\left(\dfrac{\sqrt{6}}{3}\right)^2-1=\dfrac{1}{3}\\ tan2\alpha=\dfrac{sin2\alpha}{cos2\alpha}=\dfrac{\dfrac{2\sqrt{2}}{3}}{\dfrac{1}{3}}=2\sqrt{2}\\ cot2\alpha=\dfrac{1}{tan2\alpha}=\dfrac{1}{2\sqrt{2}}=\dfrac{\sqrt{2}}{4}\)

HQ
Hà Quang Minh
Giáo viên
25 tháng 8 2023

\(b,sin^2\dfrac{\alpha}{2}+cos^2\dfrac{\alpha}{2}=1\\ \Rightarrow cos\dfrac{\alpha}{2}=\pm\sqrt{1-sin^2\dfrac{\alpha}{2}}=\pm\sqrt{1-\left(\dfrac{3}{4}\right)^2}=\pm\dfrac{\sqrt{7}}{4}\)

Vì \(\pi< \alpha< 2\pi\Rightarrow\dfrac{\pi}{2}< \dfrac{\alpha}{2}< \pi\Rightarrow cos\alpha=-\dfrac{\sqrt{7}}{4}\)

\(sin\alpha=2sin\dfrac{\alpha}{2}cos\dfrac{\alpha}{2}=2\cdot\dfrac{3}{4}\cdot\left(-\dfrac{\sqrt{7}}{4}\right)=-\dfrac{3\sqrt{7}}{8}\\ cos\alpha=2cos^2\dfrac{\alpha}{2}-1=2\cdot\left(-\dfrac{\sqrt{7}}{4}\right)^2-1=-\dfrac{1}{8}\\sin2\alpha=2sin\alpha cos\alpha=2\cdot\left(-\dfrac{3\sqrt{7}}{8}\right)\cdot\left(-\dfrac{1}{8}\right)=\dfrac{3\sqrt{7}}{32}\\ cos2\alpha=2cos^2\alpha-1=2\cdot\left(-\dfrac{1}{8}\right)^2-1=-\dfrac{31}{32}\\ tan2\alpha=\dfrac{sin2\alpha}{cos2\alpha}=\dfrac{\dfrac{3\sqrt{7}}{32}}{-\dfrac{31}{32}}=-\dfrac{3\sqrt{7}}{31}\\ cot2\alpha=\dfrac{1}{tan2\alpha}=\dfrac{1}{-\dfrac{3\sqrt{7}}{31}}=-\dfrac{31\sqrt{7}}{21}\)

NV
10 tháng 6 2020

\(tana+cota=2\Leftrightarrow\frac{sina}{cosa}+\frac{cosa}{sina}=2\)

\(\Leftrightarrow\frac{sin^2a+cos^2a}{sina.cosa}=2\)

\(\Leftrightarrow1=2sina.cosa\)

\(\Leftrightarrow sin2a=1\)

HQ
Hà Quang Minh
Giáo viên
25 tháng 8 2023

\(a,cos2\alpha=2cos^2\alpha-1=\dfrac{2}{5}\\ \Leftrightarrow cos^2\alpha=\dfrac{7}{10}\Rightarrow cos\alpha=\pm\dfrac{\sqrt{70}}{10}\)

Vì \(-\dfrac{\pi}{2}< \alpha< 0\Rightarrow cos\alpha=\dfrac{\sqrt{70}}{10}\)

Ta có: 

\(sin^2\alpha+cos^2\alpha=1\\ \Rightarrow sin^2\alpha=1-\dfrac{7}{10}=\dfrac{3}{10}\\ \Rightarrow sin\alpha=\pm\sqrt{30}10\)

Vì \(-\dfrac{\pi}{2}< \alpha< 0\Rightarrow sin\alpha=-\dfrac{\sqrt{30}}{10}\)

\(tan\alpha=\dfrac{sin\alpha}{cos\alpha}=\dfrac{-\dfrac{\sqrt{30}}{10}}{\dfrac{-\sqrt{70}}{10}}=-\dfrac{\sqrt{21}}{7}\\ cot\alpha=\dfrac{1}{tan\alpha}=\dfrac{1}{-\dfrac{\sqrt{21}}{7}}=-\dfrac{\sqrt{21}}{3}\)

HQ
Hà Quang Minh
Giáo viên
25 tháng 8 2023

\(b,sin^22\alpha+cos^22\alpha=1\\ \Rightarrow cos2\alpha=\sqrt{1-\left(-\dfrac{4}{9}\right)^2}=\pm\dfrac{\sqrt{65}}{9}\)

Vì \(\dfrac{\pi}{2}< \alpha< \dfrac{3\pi}{4}\Rightarrow\pi< 2\alpha< \dfrac{3\pi}{2}\Rightarrow cos2\alpha=-\dfrac{\sqrt{65}}{9}\)

\(cos2\alpha=2cos^2\alpha-1=-\dfrac{\sqrt{65}}{9}\\ \Rightarrow cos\alpha=\pm\sqrt{\dfrac{9-\sqrt{65}}{18}}\)

Vì \(\dfrac{\pi}{2}< \alpha< \dfrac{3\pi}{4}\Rightarrow cos\alpha=-\sqrt{\dfrac{9-\sqrt{65}}{18}}\)

\(sin^2\alpha+cos^2\alpha=1\\ \Rightarrow sin^2\alpha=\dfrac{9+\sqrt{65}}{18}\\ \Rightarrow sin\alpha=\pm\sqrt{\dfrac{9+\sqrt{65}}{18}}\)

Vì \(\dfrac{\pi}{2}< \alpha< \dfrac{3\pi}{4}\Rightarrow sin\alpha=\sqrt{\dfrac{9+\sqrt{65}}{18}}\)

\(tan\alpha=\dfrac{sin\alpha}{cos\alpha}=\dfrac{\sqrt{\dfrac{9+\sqrt{65}}{18}}}{-\sqrt{\dfrac{9-\sqrt{65}}{18}}}\approx-4,266\\ cot\alpha=\dfrac{1}{tan\alpha}\approx-0,234\)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

Ta có:

a) \(\sin \left( {\alpha  + \frac{\pi }{6}} \right) = \sin \alpha \cos \frac{\pi }{6} + \cos \alpha \sin \frac{\pi }{6} = \frac{{\sqrt 6 }}{3}.\frac{{\sqrt 3 }}{2} + \left( { - \frac{1}{{\sqrt 3 }}} \right).\frac{1}{2} = \frac{{ - \sqrt 3  + 3\sqrt 2 }}{6}\)      

b) \(\cos \left( {\alpha  + \frac{\pi }{6}} \right) = \cos \alpha .\cos \frac{\pi }{6} - \sin \alpha \sin \frac{\pi }{6} = \left( { - \frac{1}{{\sqrt 3 }}} \right).\frac{{\sqrt 3 }}{2} - \frac{{\sqrt 6 }}{3}.\frac{1}{2} =  - \frac{{3 + \sqrt 6 }}{6}\)

c) \(\sin \left( {\alpha  - \frac{\pi }{3}} \right) = \sin \alpha \cos \frac{\pi }{3} - \cos \alpha \sin \frac{\pi }{3} = \frac{{\sqrt 6 }}{3}.\frac{1}{2} - \left( { - \frac{1}{{\sqrt 3 }}} \right).\frac{{\sqrt 3 }}{2} = \frac{{3 + \sqrt 6 }}{6}\)

d) \(\cos \left( {\alpha  - \frac{\pi }{6}} \right) = \cos \alpha \cos \frac{\pi }{6} + \sin \alpha \sin \frac{\pi }{6} = \left( { - \frac{1}{{\sqrt 3 }}} \right).\frac{{\sqrt 3 }}{2} + \frac{{\sqrt 6 }}{3}.\frac{1}{2} = \frac{{ - 3 + \sqrt 6 }}{6}\)

HQ
Hà Quang Minh
Giáo viên
25 tháng 8 2023

 

QT
Quoc Tran Anh Le
Giáo viên
21 tháng 9 2023

Ta có:

 \(\begin{array}{l}{\tan ^2}\alpha  + 1 = \frac{1}{{{{\cos }^2}\alpha }}\\ \Rightarrow {\left( {\frac{2}{3}} \right)^2} + 1 = \frac{1}{{{{\cos }^2}\alpha }}\\ \Rightarrow \frac{1}{{{{\cos }^2}\alpha }} = \frac{{13}}{9}\\ \Rightarrow \cos \alpha  =  \pm \frac{{3\sqrt {13} }}{{13}}\end{array}\)

Do \(\pi  < \alpha  < \frac{{3\pi }}{2} \Rightarrow \cos \alpha  =  - \frac{{3\sqrt {13} }}{{13}}\)

Ta có: \(\begin{array}{l}\tan \alpha  = \frac{{\sin \alpha }}{{\cos \alpha }} \Rightarrow \frac{2}{3} = \sin \alpha :\left( { - \frac{{3\sqrt {13} }}{{13}}} \right)\\ \Rightarrow \sin \alpha  =  - \frac{{2\sqrt {13} }}{{13}}\end{array}\)