K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 9 2023

C = 1/(9.10) - 1/(8.9) - 1/(7.8) - ... - 1/(2.3) - 1/(1.2)

= 1/9 - 1/10 - 1/8 + 1/9 - 1/7 + 1/8 - ... - 1/2 + 1/3 - 1 + 1/2

= 1/9 - 1/10 + 1/9 - 1

= 2/9 - 11/10

= -79/90

22 tháng 7 2017

1. Tính:

a. \(\dfrac{\text{−1 }}{\text{4 }}+\dfrac{\text{5 }}{\text{6 }}=\dfrac{-3}{12}+\dfrac{10}{12}=\dfrac{7}{12}\)

b. \(\dfrac{\text{5 }}{\text{12 }}+\dfrac{\text{-7 }}{8}=\dfrac{10}{24}+\dfrac{-21}{24}=\dfrac{-11}{24}\)

c. \(\dfrac{-7}{6}+\dfrac{-3}{10}=\dfrac{-35}{30}+\dfrac{-9}{30}=\dfrac{-44}{30}=\dfrac{-22}{15}\)

d.\(\dfrac{-3}{7}+\dfrac{5}{6}=\dfrac{-18}{42}+\dfrac{35}{42}=\dfrac{17}{42}\)

2. Tính :

a. \(\dfrac{2}{14}-\dfrac{5}{2}=\dfrac{2}{14}-\dfrac{35}{14}=\dfrac{-33}{14}\)

b.\(\dfrac{-13}{12}-\dfrac{5}{18}=\dfrac{-39}{36}-\dfrac{10}{36}=\dfrac{49}{36}\)

c.\(\dfrac{-2}{5}-\dfrac{-3}{11}=\dfrac{-2}{5}+\dfrac{3}{11}=\dfrac{-22}{55}+\dfrac{15}{55}=\dfrac{-7}{55}\)

d. \(0,6--1\dfrac{2}{3}=\dfrac{6}{10}--\dfrac{5}{3}=\dfrac{3}{5}+\dfrac{5}{3}=\dfrac{9}{15}+\dfrac{25}{15}=\dfrac{34}{15}\)

3. Tính :

a.\(\dfrac{-1}{39}+\dfrac{-1}{52}=\dfrac{-4}{156}+\dfrac{-3}{156}=\dfrac{-7}{156}\)

b.\(\dfrac{-6}{9}-\dfrac{12}{16}=\dfrac{2}{3}-\dfrac{3}{4}=\dfrac{8}{12}-\dfrac{9}{12}=\dfrac{-17}{12}\)

c. \(\dfrac{-3}{7}-\dfrac{-2}{11}=\dfrac{-3}{7}+\dfrac{2}{11}=\dfrac{-33}{77}+\dfrac{14}{77}=\dfrac{-19}{77}\)

d.\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...\dfrac{1}{8.9}+\dfrac{1}{9.10}\)

\(=\dfrac{1}{1}+\dfrac{1}{10}\)

\(=\dfrac{10}{10}-\dfrac{1}{10}\)

= \(\dfrac{9}{10}\)

Chế Kazuto Kirikaya thử tham khảo thử đi !!!

23 tháng 7 2017

Mấy câu trên kia dễ rồi mình chữa mình câu \(c\) bài \(3\) thôi nhé Kazuto Kirikaya

d) \(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{9\cdot10}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{9}-\dfrac{1}{10}\)

\(=1-\dfrac{1}{10}\)

\(=\dfrac{9}{10}\)

`#3107`

`a)`

\(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{1999\cdot2000}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{1999}-\dfrac{1}{2000}\)

\(=1-\dfrac{1}{2000}\)

\(=\dfrac{1999}{2000}\)

`b)`

\(\dfrac{1}{1\cdot4}+\dfrac{1}{4\cdot7}+\dfrac{1}{7\cdot10}+...+\dfrac{1}{100\cdot103}?\)

\(=\dfrac{1}{3}\cdot\left(\dfrac{3}{1\cdot4}+\dfrac{3}{4\cdot7}+\dfrac{3}{7\cdot10}+...+\dfrac{3}{100\cdot103}\right)\)

\(=\dfrac{1}{3}\cdot\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{100}-\dfrac{1}{103}\right)\)

\(=\dfrac{1}{3}\cdot\left(1-\dfrac{1}{103}\right)\)

\(=\dfrac{1}{3}\cdot\dfrac{102}{103}\)

\(=\dfrac{34}{103}\)

`c)`

\(\dfrac{8}{9}-\dfrac{1}{72}-\dfrac{1}{56}-\dfrac{1}{42}-....-\dfrac{1}{6}-\dfrac{1}{2}\)

\(=\dfrac{8}{9}-\left(\dfrac{1}{2}+\dfrac{1}{6}+...+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}\right)\)

\(=\dfrac{8}{9}-\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{6\cdot7}+\dfrac{1}{7\cdot8}+\dfrac{1}{8\cdot9}\right)\)

\(=\dfrac{8}{9}-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{8}-\dfrac{1}{9}\right)\)

\(=\dfrac{8}{9}-\left(1-\dfrac{1}{9}\right)\)

\(=\dfrac{8}{9}-\dfrac{8}{9}\\ =0\)

23 tháng 9 2023

b) Sửa đề:

 \(\dfrac{1}{1.4}+\dfrac{1}{4.7}+\dfrac{1}{7.10}+...+\dfrac{1}{100.103}\)

\(=\dfrac{1}{3}.\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{100}-\dfrac{1}{103}\right)\)

\(=\dfrac{1}{3}.\left(1-\dfrac{1}{103}\right)\)

\(=\dfrac{1}{3}.\left(\dfrac{103}{103}-\dfrac{1}{103}\right)\)

\(=\dfrac{1}{3}.\dfrac{102}{103}\)

\(=\dfrac{34}{103}\)

5 tháng 3 2017

đặt \(M=\dfrac{7}{3.4}-\dfrac{9}{4.5}+\dfrac{11}{5.6}-\dfrac{13}{6.7}+\dfrac{15}{7.8}-\dfrac{17}{8.9}+\dfrac{19}{9.10}\)

ta có:

\(M=\dfrac{7}{3.4}-\dfrac{9}{4.5}+\dfrac{11}{5.6}-\dfrac{13}{6.7}+\dfrac{15}{7.8}-\dfrac{17}{8.9}+\dfrac{19}{9.10}\)

\(\Leftrightarrow M=\dfrac{3+4}{3.4}-\dfrac{4+5}{4.5}+\dfrac{5+6}{5.6}-\dfrac{6+7}{6.7}+\dfrac{7+8}{7.8}-\dfrac{8+9}{8.9}+\dfrac{9+10}{9.10}\) \(\Leftrightarrow M=\dfrac{3}{3.4}+\dfrac{4}{3.4}-\dfrac{4}{4.5}-\dfrac{5}{4.5}+\dfrac{5}{5.6}+\dfrac{6}{5.6}-\dfrac{6}{6.7}-\dfrac{7}{6.7}+\dfrac{7}{7.8}+\dfrac{8}{7.8}-\dfrac{8}{8.9}-\dfrac{9}{8.9}+\dfrac{9}{9.10}+\dfrac{10}{9.10}\) \(\Rightarrow M=\dfrac{1}{4}+\dfrac{1}{3}-\dfrac{1}{5}-\dfrac{1}{4}+\dfrac{1}{6}+\dfrac{1}{5}-\dfrac{1}{7}-\dfrac{1}{6}+\dfrac{1}{8}+\dfrac{1}{7}-\dfrac{1}{9}-\dfrac{1}{8}+\dfrac{1}{10}+\dfrac{1}{9}\) \(\Rightarrow M=\dfrac{1}{3}+\dfrac{1}{10}\)

\(\Rightarrow M=\dfrac{10}{30}+\dfrac{3}{30}\)

\(\Rightarrow M=\dfrac{13}{30}\)

vậy M = \(\dfrac{13}{30}\)

vậy \(\dfrac{7}{3.4}-\dfrac{9}{4.5}+\dfrac{11}{5.6}-\dfrac{13}{6.7}+\dfrac{15}{7.8}-\dfrac{17}{8.9}+\dfrac{19}{9.10}=\dfrac{13}{30}\)

5 tháng 3 2017

\(\dfrac{7}{3.4}-\dfrac{9}{4.5}+\dfrac{11}{5.6}-\dfrac{13}{6.7}+\dfrac{15}{7.8}-\dfrac{17}{8.9}+\dfrac{19}{9.10}=\dfrac{3+4}{3.4}-\dfrac{4+5}{4.5}+\dfrac{5+6}{5.6}-\dfrac{6+7}{6.7}+\dfrac{7+8}{7.8}-\dfrac{8+9}{8.9}+\dfrac{9+10}{9.10}=\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}=\dfrac{1}{3}-\dfrac{1}{10}=\dfrac{7}{30}\)

4 tháng 6 2018

Câu b, B=\(\dfrac{5}{1\cdot2}+\dfrac{13}{2\cdot3}+\dfrac{25}{3\cdot4}+...+\dfrac{181}{9\cdot10}\)

\(=\left(\dfrac{1}{1\cdot2}+\dfrac{4}{1\cdot2}\right)+\left(\dfrac{1}{2\cdot3}+\dfrac{12}{2\cdot3}\right)+\left(\dfrac{1}{3\cdot4}+\dfrac{24}{3\cdot4}\right)+...+\left(\dfrac{1}{9\cdot10}+\dfrac{180}{9\cdot10}\right)\)=\(\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{9\cdot10}\right)+\left(\dfrac{4}{1\cdot2}+\dfrac{12}{2\cdot3}+...+\dfrac{180}{9\cdot10}\right)\)

=\(\left(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+....+\dfrac{1}{9}-\dfrac{1}{10}\right)\)\(+\left(2+2+2+.......+2\right)\)

=\(\dfrac{1}{1}-\left(\dfrac{1}{2}-\dfrac{1}{2}\right)-\left(\dfrac{1}{3}-\dfrac{1}{3}\right)-......-\left(\dfrac{1}{9}-\dfrac{1}{9}\right)+\dfrac{1}{10}+\left(2\cdot9\right)\)

=\(1-\dfrac{1}{10}+18\) \(=\dfrac{9}{10}+18\)

=18.9

4 tháng 6 2018

a, \(\dfrac{\dfrac{3}{2}-\dfrac{2}{5}+\dfrac{1}{10}}{\dfrac{3}{2}-\dfrac{2}{3}+\dfrac{1}{12}}=\dfrac{\dfrac{15}{10}-\dfrac{4}{10}+\dfrac{1}{10}}{\dfrac{18}{12}-\dfrac{8}{12}+\dfrac{1}{12}}=\dfrac{\dfrac{15-4+1}{10}}{\dfrac{18-8+1}{12}}=\dfrac{\dfrac{12}{10}}{\dfrac{11}{12}}=\dfrac{72}{55}\)

9 tháng 5 2022

999/1000(hình như v)

9 tháng 5 2022

Áp dụng công thức \(\dfrac{1}{k\left(k+1\right)}=\dfrac{1}{k}-\dfrac{1}{k+1}\), ta có:

\(A=\left(1-\dfrac{1}{2}\right)+\left(\dfrac{1}{2}-\dfrac{1}{3}\right)+\left(\dfrac{1}{3}-\dfrac{1}{4}\right)+...+\left(\dfrac{1}{999}-\dfrac{1}{1000}\right)=1-\dfrac{1}{1000}=\dfrac{999}{1000}\)

28 tháng 6 2017

\(A=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+.....+\dfrac{1}{9.10}\)

\(A=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+.....+\dfrac{1}{9}-\dfrac{1}{10}\)

\(A=1-\dfrac{1}{10}=\dfrac{9}{10}\)

\(B=\dfrac{1}{100}-\dfrac{1}{100.99}-\dfrac{1}{99.98}-\dfrac{1}{98.97}-.....-\dfrac{1}{3.2}-\dfrac{1}{2.1}\)

\(B=\dfrac{1}{100}-\dfrac{1}{100}+\dfrac{1}{99}-\dfrac{1}{99}+\dfrac{1}{98}-\dfrac{1}{98}+\dfrac{1}{97}-.....+\dfrac{1}{3}-\dfrac{1}{2}+\dfrac{1}{2}-1\)\(B=0-1=-1\)

29 tháng 6 2017

cám ơn bn

1 tháng 11 2023

a) \(A=\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{100}}\)

\(2A=2\cdot\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{100}}\right)\)

\(2A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{101}}\)

\(2A-A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{99}}-\dfrac{1}{2}-\dfrac{1}{2^2}-...-\dfrac{1}{2^{100}}\)

\(A=1-\dfrac{1}{2^{100}}\)

b) \(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{2023\cdot2024}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2023}-\dfrac{1}{2024}\)

\(=1-\dfrac{1}{2024}\)

\(=\dfrac{2024}{2024}-\dfrac{1}{2024}\)

\(=\dfrac{2023}{2024}\)

1 tháng 11 2023

cứu