Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(C=\left(1+\frac{1}{1.3}\right)\)\(.\left(1+\frac{1}{2.4}\right)\)\(.\left(1+\frac{1}{3.5}\right)\)\(.\left(1+\frac{1}{2014.2016}\right)\)
\(=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}...\frac{2015^2}{2014.2016}\)
\(=\frac{2.2}{1.3}.\frac{3.3}{2.4}.\frac{4.4}{3.5}...\frac{2015.2015}{2014.2016}\)
\(=\frac{\left(2.3.4...2015\right).\left(2.3.4...2015\right)}{\left(1.2.3...2014\right).\left(3.4.5...2016\right)}\)
\(=\frac{2015.2}{2016}\)
\(=...\)(tự tinhs)
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
HB
20 tháng 4 2018
\(C=\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right)\left(1+\frac{1}{3.5}\right)..\left(1+\frac{1}{2014.2016}\right)\) \(=\frac{4}{1.3}.\frac{9}{2.4}.\frac{16}{3.5}...\frac{2015.2015}{2014.2016}\) \(=\frac{2.2.3.3.4.4...2015.2015}{1.3.2.4.3.5...2014.2016}\) \(=\frac{\left(2.3.4..2015\right)\left(2.3.4..2015\right)}{\left(1.2.3..2014\right)\left(3.4.5..2016\right)}\) \(=\frac{2015.2}{2016}=\frac{2015}{1008}\) Vậy \(C=\frac{2015}{1008}\) 19 tháng 3 2017
Ta có công thức : \(1+\frac{1}{n\left(n+2\right)}=\frac{n\left(n+2\right)+1}{n\left(n+2\right)}=\frac{n^2+2n+1}{n\left(n+2\right)}=\frac{\left(n+1\right)^2}{n\left(n+2\right)}\) Áp dụng vào bài toán ta được : \(C=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}..........\frac{2015^2}{2014.2016}\) \(=\frac{\left(2.3.4....2015\right)\left(2.3.4....2015\right)}{\left(1.2.3...2014\right)\left(3.4.5.....2016\right)}\) \(=\frac{2015.2}{2016}=\frac{2015}{1008}\) 19 tháng 3 2017
=1(1/1*3*(1/2*4)*...*(1+1/2014*2016) =1/2(2+2/1*3)+(2+2/2*4)*...(2+2/2014*2016) =1/2(2+1/1-1/3)...(2+1/2014-1/2016) =1/2*(1/1-1/2016) =3023/4032 |
ket qua la 5435 ban nha