Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$2\times A=\frac{2}{1\times 3}+\frac{2}{3\times 5}+\frac{2}{5\times 7}+...+\frac{2}{19\times 21}$
$2\times A=\frac{3-1}{1\times 3}+\frac{5-3}{3\times 5}+\frac{7-5}{5\times 7}+...+\frac{21-19}{19\times 21}$
$=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{19}-\frac{1}{21}$
$=1-\frac{1}{21}=\frac{20}{21}$
$\Rightarrow A=\frac{20}{21}: 2= \frac{10}{21}$
sửa đề câu a và câu b nhá , mik nghĩ đề như này :
\(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{213\cdot215}\)
\(=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{213}-\frac{1}{215}\)
= \(\frac{1}{1}-\frac{1}{215}\)
\(=\frac{214}{215}\)
b, đặt \(A=\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\frac{1}{7\cdot9}+...+\frac{1}{213\cdot215}\)
\(A\cdot2=\frac{2}{1\cdot3}+\frac{2}{3.5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{213\cdot215}\)
\(A\cdot2=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{213}-\frac{1}{215}\)
\(A\cdot2=\frac{1}{1}-\frac{1}{215}\)
\(A\cdot2=\frac{214}{215}\)
\(A=\frac{214}{215}:2\)
\(A=\frac{107}{215}\)
\(=2.\left(\frac{1}{1.3}+\frac{1}{3.5}+..+\frac{1}{9.11}\right)\)
\(=2.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...-\frac{1}{11}\right)\)
\(=2.\left(1-\frac{1}{11}\right)\)
\(=2.\left(\frac{11}{11}-\frac{1}{11}\right)\)
\(=2.\frac{10}{11}\)
\(=\frac{20}{11}\)
\(\frac{2}{1\times3}+\frac{2}{3\times5}+...+\frac{2}{19\times21}=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{19}-\frac{1}{21}\)
\(=1-\frac{1}{21}=\frac{20}{21}\)
đúng cái nhé
Nhưng bn ơiX là x^2 hay tách biệt nếu tách biệt thì là 9/49 còn nếu là x^2 thì là 3/7 nhé
\(=\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{19}-\frac{1}{21}\right)xX=\frac{9}{7} \)\(=\left(\frac{1}{3}-\frac{1}{21}\right)xX=\frac{9}{7}\)\(=\frac{2}{7}xX=\frac{9}{7}\)
\(X=\frac{9}{7}:\frac{2}{7}\)
\(X=\frac{9}{2}\)
\(\frac{1}{3x5}+\frac{1}{5x7}+\frac{1}{7x9}+..........+\frac{1}{97x99}\)
= \(1-\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-........-\frac{1}{97}+\frac{1}{97}-\frac{1}{99}\)
= \(1-\frac{1}{3}-\frac{1}{99}\)
= \(\frac{99}{99}-\frac{33}{99}-\frac{1}{99}\)
= \(\frac{65}{99}\)
\(\frac{1}{3}\)*5+\(\frac{1}{5}\)*7+\(\frac{1}{7}\)*9*...*\(\frac{1}{97}\)*99
=\(\frac{5}{3}\)*\(\frac{7}{5}\)*\(\frac{9}{7}\)*...*\(\frac{99}{97}\)
=\(\frac{99}{3}\)
đúng thì nha
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}\)
\(=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}\right)\)
\(=\frac{1}{2}.\left(1-\frac{1}{9}\right)\)
\(=\frac{1}{2}.\frac{8}{9}\)
\(=\frac{4}{9}\)
#)Giải :
\(S=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}\)
\(\Rightarrow2S=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}\)
\(\Rightarrow2S=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}\)
\(\Rightarrow2S=1-\frac{1}{9}=\frac{8}{9}\)
\(S=\frac{8}{9}:2=\frac{4}{9}\)
#~Will~be~Pens~#
Ta có;\(\frac{4}{1\times3}+\frac{4}{3\times5}+\frac{4}{5\times7}+....+\frac{4}{19\times21}\)
\(=2\times\left(\frac{2}{1\times3}+\frac{2}{3\times5}+\frac{2}{5\times7}+....+\frac{2}{19\times21}\right)\)
\(=2\times\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{19}-\frac{1}{21}\right)\)
\(=2\times\left(1-\frac{1}{21}\right)=2\times\frac{20}{21}=\frac{40}{21}\)
4/1 x 3 + 4/ 3 x 5 + 4/ 5 x 7 + ....+ 4/ 17 x 19 + 4/ 19 x 21
= 2 x ( 2/ 1 x 3 + 2/ 3 x 5 + 2/ 5 x 7 + ...+ 2/ 17 x 19 + 2/ 19 x 21 )
= 2 x ( 1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + ...+ 1/17 - 1/19 + 1/19 - 1/21 )
= 2 x ( 1 - 1/21 )
= 2 x 20/21
= 40/21
Chúc bạn học giỏi !!!
14,26651106